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SUMMARY

Biotic and abiotic surfaces in marine waters are rapidly colonized
by microorganisms. Surface colonization and subsequent biofilm
formation and development provide numerous advantages to
these organisms and support critical ecological and biogeochemi-
cal functions in the changing marine environment. Microbial sur-
face association also contributes to deleterious effects such as bio-
fouling, biocorrosion, and the persistence and transmission of
harmful or pathogenic microorganisms and their genetic determi-
nants. The processes and mechanisms of colonization as well as
key players among the surface-associated microbiota have been
studied for several decades. Accumulating evidence indicates that
specific cell-surface, cell-cell, and interpopulation interactions
shape the composition, structure, spatiotemporal dynamics, and
functions of surface-associated microbial communities. Several
key microbial processes and mechanisms, including (i) surface,
population, and community sensing and signaling, (ii) intraspe-

cies and interspecies communication and interaction, and (iii) the
regulatory balance between cooperation and competition, have
been identified as critical for the microbial surface association
lifestyle. In this review, recent progress in the study of marine
microbial surface colonization and biofilm development is syn-
thesized and discussed. Major gaps in our knowledge remain. We
pose questions for targeted investigation of surface-specific com-
munity-level microbial features, answers to which would advance

Published 23 December 2015

Citation Dang H, Lovell CR. 2016. Microbial surface colonization and biofilm
development in marine environments. Microbiol Mol Biol Rev 80:91–138.
doi:10.1128/MMBR.00037-15.

Address correspondence to Hongyue Dang, DangHY@xmu.edu.cn, or
Charles R. Lovell, lovell@biol.sc.edu.

Copyright © 2015, American Society for Microbiology. All Rights Reserved.

crossmark

March 2016 Volume 80 Number 1 mmbr.asm.org 91Microbiology and Molecular Biology Reviews

http://dx.doi.org/10.1128/MMBR.00037-15
http://crossmark.crossref.org/dialog/?doi=10.1128/MMBR.00037-15&domain=pdf&date_stamp=2015-12-23
http://mmbr.asm.org


our understanding of surface-associated microbial community
ecology and the biogeochemical functions of these communities
at levels from molecular mechanistic details through systems bio-
logical integration.

INTRODUCTION

Numerous kinds of surfaces with distinct physicochemical and
biological properties exist in marine environments. These

surfaces include living animal and algal surfaces, various kinds of
particles and aggregates, inert or bioreactive mineral substrata,
and submerged constructs and vessel surfaces. Diverse aquatic
microorganisms are capable of colonizing surfaces of various
kinds, leading to the formation of biofilms and to the develop-
ment of specialized processes within these structures (1, 2). Sur-
face association appears to be an ancient, universal, and funda-
mental survival mechanism that provides microorganisms with
critical advantages, including greater access to nutritional re-
sources, enhanced organism interactions, and greater environ-
mental stability. These features are of particular importance in
natural aquatic environments in which nutrients are often growth
limiting and ambient conditions are highly dynamic and some-
times deleterious (1, 3, 4). Alterations (usually stimulation) of
microbial activities by surfaces in soil environments were first re-
ported more than a century ago (5, 6), and a similar surface-asso-
ciated stimulation of microbial activities was subsequently found
to be prevalent in marine environments as well (7). Key genetic
and ecophysiological processes and mechanisms that are funda-
mental to the life of marine bacteria on surfaces have been re-
vealed. Some up-to-date reviews on marine biofilm- or particle-
associated microorganisms are available (e.g., see references
8–16). These reviews, albeit insightful, focus mostly on specific
microbial groups, processes, functions, or colonizable substrata.
Systematic reviews on the surface-associated microbiota and par-
ticularly the mechanisms that control the formation and develop-
ment of surface-colonizing microbial communities in the marine
environment are currently lacking. Because Bacteria are the most
diverse and important (compositionally, dynamically, and func-
tionally) microorganisms on marine surfaces and early colonizers
may determine the structure, dynamics, and function of mature
biofilm communities (17, 18), this review focuses on Bacteria and
their processes and mechanisms related to early surface coloniza-
tion, biofilm formation, and biofilm functions.

Physiological Advantages and Ecological Functions of
Microbial Surface Association

Surfaces submerged in marine water are rapidly colonized by mi-
croorganisms (13). As stated above, surface colonization and sub-
sequent biofilm formation provide these organisms with impor-
tant advantages. Perhaps the most critical of these advantages in
the context of the marine environment is access to resources.
Charged and hydrophobic materials tend to accumulate on sub-
merged surfaces, and biogenic particles such as phytoplankton
detritus, zooplankton fecal pellets, and marine snow are generally
rich in organic matter, resulting in enhanced availability of inor-
ganic macronutrients, organic carbon and energy sources, micro-
nutrients, and electron donors or acceptors in otherwise strongly
nutrient-limited milieus (1, 3, 19–22). Surfaces have been shown
to be “hot spots” of microbially catalyzed, biogeochemically im-
portant activities, as described in greater detail below. Surface col-

onization and the production of the shielding biofilm matrix, an-
tiprotozoal factors, and stress response products also promote
protection from predators, viruses, antibiotics, and other
chemical toxins and deleterious environmental pressures (1, 3,
13, 19, 21–28). The biofilm matrix and the development within
it of specific microenvironments promote the maintenance of
extracellular enzyme structural integrity and activities (23, 29)
as well as improved opportunities for physiological homeosta-
sis of the bacteria (1, 3, 23).

Interactions of microorganisms in close spatial juxtaposition
within the biofilm matrix facilitate metabolic cooperation (1, 3,
19, 21, 22, 26, 30) and genetic exchanges due to both the physical
structure of the biofilm and community-level communication
among organisms (21, 22, 30, 31). Biofilms often feature open-
channel and pore structures, enhancing solute and microbial
transport and promoting frequent cell-cell contacts (29, 32). The
establishment of high microbial densities and the sensing, signal-
ing, and adaptive responses of these dense assemblages of surface-
associated microbiota in turn promote within-population micro-
bial diversification, between-population niche specialization, and
higher-level microbial community organization (13, 21–23, 26,
30, 33–39). The enhanced and sometimes unique ecophysiologi-
cal activities of surface- and biofilm-associated microbial commu-
nities lay the foundations for biogeochemical functions that can
sharply differ from those of free-living (i.e., planktonic) microbial
communities in marine environments. For example, biofilm-as-
sociated microbial communities may thrive in extreme or hostile
environments where individual microorganisms would find the
maintenance of activity and growth, even survival, challenging
(40–42). Biofilm formation also contributes to the development
of organic aggregates and high-molecular-weight (HMW) com-
plexes that have dynamics distinct from those of their constitu-
ents. In addition, the stabilizing effects of life in biofilms facilitate
the decomposition of sinking particles by surface-associated mi-
crobial communities, altering carbon sequestration efficiency and
thus the climate modulation capacity of the ocean via the “biolog-
ical pump” mechanism (i.e., the vertical transportation of photo-
synthetically produced organic carbon from the euphotic surface
ocean to the dark deep ocean). Carbon remineralized during sed-
imentation reenters the carbon cycle and ocean-air exchange
quickly, while carbon that is transported from the euphotic zone
to the interior and sediments of the deep ocean may remineralize
and circulate with a long residence time (43–46).

Considering the substantial physiological advantages of surface
colonization and biofilm formation, it is not surprising that the
surface lifestyle plays important roles in microbial adaptation to
and biogeochemical functioning in marine environments (3).
Specific regulatory networks that modulate the expression of nu-
merous genes and metabolic pathways in surface-associated cells
dictate the biogeochemical functions that result (3, 22, 47–49).
Consequently, differences in physiological status and activities be-
tween surface-associated and free-living cells of the same taxon are
often observed (e.g., see references 1, 6, and 47). Surface coloni-
zation may be particularly important for the expression and secre-
tion of biopolymer-targeted extracellular enzymes and for the
transition of microbial cells to the competent state, in which the
uptake and incorporation of extracellular DNA (eDNA) are effec-
tive (31, 50, 51). Surface-associated microorganisms play impor-
tant roles in numerous critical marine processes, including or-
ganic matter remineralization (23, 52–54), nutrient regeneration
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and element cycling (23, 52, 53, 55), contaminant (such as heavy
metal) concentration and transfer in food webs (23), induction of
benthic invertebrate larval settlement (10, 13, 56), and xenobiotic
compound biodegradation (21, 30, 32, 57). The unique genetic,
physiological, and ecological processes, mechanisms, and func-
tions associated with the surface-associated microbiota make their
study a fascinating and productive area in microbiology, with im-
portant implications for basic marine science and for applied bio-
technology and bioengineering.

Physiological Challenges and Deleterious Effects of
Microbial Surface Association

Surface-associated microorganisms also face challenges that free-
living microorganisms may avoid (27, 58, 59). High cell densities
on surfaces, and particularly in biofilms, promote intense compe-
tition for nutrients and other resources as well as progressive
deterioration of conditions due to depletion of resources and ac-
cumulation of metabolic wastes. This may force some microor-
ganisms into inactive states or even kill them (27, 59–62). Re-
source limitation and waste accumulation due to encapsulation in
the biofilm matrix are of particular importance in deeper biofilm
layers (35, 39). Thus, the spatial heterogeneity of biofilms and the
activities of neighboring microorganisms can contribute to the
formation of optimal, suboptimal, and adverse microniches for a
given microorganism within the biofilm three-dimensional struc-
ture. Changes in the distributions of chemical species and other
biota in a biofilm may also change the microenvironments and
thus influence the activities of a surface-associated microorgan-
ism. Marine particles are prone to concentrate viruses (63), and
viral attack is sometimes augmented in surface-associated micro-
bial communities due to their high cell densities or enhanced virus
production induced by the quorum sensing (QS) mechanism (64–
66). Surfaces and biofilms also have the tendency to absorb heavy
metals and toxic organic compounds (23, 32, 67). Surface-associ-
ated microorganisms generally switch off the expression of genes
involved in motility and switch on the expression of genes in-
volved in adhesion and biofilm development (36). Thus, biofilms
may become inhibitory if the microorganisms cannot escape
when conditions become deleterious (68). In spite of these chal-
lenges, surface association is a major mode of microbial life. In
addition to the direct benefit provided by surface-associated
growth-stimulating nutrient enrichment, the advantages pro-
vided by cell-cell interactions may be a driving force behind the
common surface association lifestyle.

Microbial surface colonization and surface-associated meta-
bolic activities also exert macroscale deleterious effects, including
biofouling (13, 56), biocorrosion (18, 55, 69), and the persistence
and transmission of harmful or pathogenic microorganisms and
virulence determinants (23, 33, 70). Biocorrosion is a particularly
important consequence of biofilm development in marine envi-
ronments and has major impacts on marine engineering, causing
extensive damage and economic losses worldwide (71, 72). In
many coastal marine environments, there is a particularly severe
carbon steel corrosion phenomenon called accelerated low water
corrosion (ALWC) (73, 74). The rate of this intensified corrosion
is usually 10 times that of common carbon steel corrosion in sea-
water (75). Despite its severity and ubiquity and numerous inves-
tigations of this phenomenon, the process and mechanism of
ALWC remain poorly understood. Neither the causative organ-
isms nor the environmental inducers of this process are com-

pletely resolved (74–76). Sulfur-oxidizing bacteria (SOB) and sul-
fate-reducing bacteria (SRB) were originally proposed to be the
key microorganisms responsible for ALWC (76, 77). However, as
ALWC occurs in the photic zone (just above the extremely low
water level) where bulk anoxic conditions usually do not exist due
to photosynthetic oxygen production in the daytime, SRB may not
contribute to ALWC prior to the development of a thick corrod-
ing biofilm and anoxic microenvironments (18). Recently, it was
found that the microaerophilic, neutrophilic, marine iron-oxidiz-
ing bacteria (FeOB) in the newly defined Zetaproteobacteria lin-
eage (78–80) contribute to carbon steel corrosion in natural and
simulated coastal environments (81, 82). Marine Zetaproteobacte-
ria FeOB may also play an important role in the initiation of
ALWC (18). A key environmental factor for the induction of
ALWC appears to be elevated concentrations of seawater inor-
ganic nitrogen compounds (especially nitrate) (75, 83, 84). Single-
cell genomic analyses showed that nitrogen acquisition is partic-
ularly important for the marine iron-oxidizing Zetaproteobacteria,
which usually harbor nitrate reductase genes (85). Some Zetapro-
teobacteria FeOB also harbor nitrogen fixation genes, and diazot-
rophy has been confirmed for some of these bacteria (85). The
importance of nitrogen acquisition to the iron-oxidizing activity
of marine Zetaproteobacteria FeOB stresses the importance of en-
vironmental nitrate (and other nitrogenous nutrients) for the in-
duction of ALWC.

The importance of environmental nitrate for the development
of ALWC is also highlighted by other lines of experimental evi-
dence. Nitrate inhibits the sulfate reduction activity of SRB and
thus is often employed to control oil reservoir souring caused by
SRB sulfidogenesis (86–91), but at the same time, it usually accel-
erates the biocorrosion rate (especially via pitting corrosion as in
ALWC) (92–94). Furthermore, many marine FeOB are facultative
iron-oxidizing nitrate reducers (95–99), which may carry out iron
corrosion using nitrate as a terminal electron acceptor under an-
oxic conditions (100, 101). It is likely that some FeOB that carry
out nitrate reduction-coupled iron oxidation may play an impor-
tant role in exacerbating ALWC before SRB take a part in further
steel corrosion. It is reasonable to hypothesize that sequential steel
surface colonization and ordered biogeochemical activities by dif-
ferent functional groups of microorganisms may thus play a crit-
ical role in the initiation and development of ALWC in marine
environments. In-depth investigations of the surface physico-
chemical and nutritional microenvironment and the composition
and dynamics of surface-associated microbiota on submerged
steels may help to fully resolve the mechanism of ALWC and pro-
vide solutions limiting damage due to this process.

Biogeochemical Contributions of Marine Surface-Associated
Microbiota

Surfaces are clearly “hot spots” of microbial activities (53, 102–
105). Compared to their free-living counterparts, surface-associ-
ated microorganisms usually possess distinct compositions (gen-
erally more diverse or more surface specific) (104, 106–110),
morphologies (usually larger cells) (102, 106, 111, 112), abun-
dances (often enriched) (53, 102, 106, 107, 109, 113), dynamics
(often greater seasonal compositional variations and diel and even
hourly activity changes) (102, 105, 114, 115), and functions (e.g.,
often higher per-cell exoenzymatic activities) (53, 102, 105–107,
110, 112, 116–118). It has been proposed that surface-associated
microorganisms are mainly copiotrophic, whereas free-living bac-
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teria are mainly oligotrophic (119–121). However, some studies
have shown similar or only slightly different particle (surface)-
associated and free-living microbial communities (122–124).
These studies were conducted in estuaries that are eutrophic and
in which most suspended particles are old and composed mainly
of inorganic matter having terrestrial or sediment origins. Parti-
cles in estuarine waters of this kind are generally less rich in or-
ganic matter than those in pelagic waters, except during algal
bloom events (118). This would tend to minimize the advantage of
particle colonization. Indeed, it has long been recognized that nu-
trient-enriched conditions inhibit bacterial irreversible adhesion
to surfaces and biofilm formation (2, 125). Supplementation of
seawater with a high concentration of glucose induces conver-
gence of the biofilm and free-living microbial communities, which
were originally quite different when no glucose or low concentra-
tions of glucose were supplied (126). On the other hand, environ-
mental microorganisms tend to form biofilms under oligotrophic
or starvation conditions (2). In non- and less-eutrophic marine
environments such as pristine estuaries and offshore waters,
where the majority of the particles are biogenic and thus organi-
cally enriched (123), significantly different community structures
of particle-associated and free-living microorganisms are com-
monly found (108, 114, 127–129). Particle-associated bacterial
communities are frequently enriched in the marine Roseobacter
clade (MRC) bacteria of the Alphaproteobacteria; the Alteromon-
adaceae and Vibrionaceae groups of the Gammaproteobacteria; as
well as the Deltaproteobacteria, Bacteroidetes, and Planctomycetes
(108, 127, 130–137). Many of these bacteria produce extracellular
enzymes for biopolymer degradation, and some require suboxic
or anoxic microniches within particles to support microaerophilic
or anaerobic metabolism. The contrasting nutritional conditions
between particles and seawater have strong impacts on microbial
lifestyle differentiation, particularly in oligotrophic environ-
ments. It is reasonable to hypothesize that the significance of
the difference between the surface-associated and free-living
microbial communities may increase from the eutrophic and ter-
rigenous particle-dominated riverine estuaries to the biogenic
particle-dominated oligotrophic open oceans, caused by the dif-
ferences in organic matter content and nutrient bioavailability
between particles in these two distinct environments. This hy-
pothesis is consistent with a recent ecophysiological study of the
marine group II Euryarchaea and numerous studies on marine
bacteria (138).

Due to steep gradients of key geochemical parameters (e.g., O2,
pH, sulfide, and redox potential) and to enrichment of nutrients
(e.g., organic and inorganic substrates, electron donors, and elec-
tron acceptors) (6, 139–141), surfaces usually support diverse and
elevated microbial metabolic and biogeochemical activities (102,
107, 111, 117). Surface-associated marine microbiota participate
in a plethora of C cycling processes. Photosynthetic and chemo-
lithoautotrophic CO2 fixation (102, 142–148), aerobic anoxygenic
phototrophic energy conservation (149–151), seawater methane
production and oxidation (143, 146, 147, 152), degradation of
biopolymers and other organic matter (102, 117, 145, 153), and
heterotrophic respiration (102, 104, 113, 145) are all enhanced on
surfaces. N cycling processes such as N2 fixation (154, 155), nitri-
fication (142, 143, 156–158), denitrification (158–161), dissimila-
tory nitrate reduction (158, 159), anaerobic ammonium oxida-
tion (anammox) (158, 162, 163), and nitrogenous organic
compound degradation (158, 164–166) are also activities associ-

ated with surfaces and can be particularly important at specific
depths in the water column. For example, in the oxygen minimum
zone (OMZ) of the Eastern Tropical North Pacific, particles con-
tribute 100% of the activity reducing nitrate to nitrite and 53 to
85% of N2 production by denitrification and anammox (167). P
cycling processes such as eDNA secretion (168, 169) and particu-
late organic phosphorus degradation (153, 170, 171) are enhanced
on marine particles, as are microbial S cycling activities such as
sulfate reduction (133, 141, 147, 153, 172), sulfur oxidation (133,
146-148, 153), and organic S compound (e.g., the algal osmolyte
dimethylsulfoniopropionate [DMSP]) transformation and degra-
dation (153, 173–175). As noted above, surface- and particle-as-
sociated microorganisms also contribute substantially to marine
iron cycling processes, such as iron oxidation and reduction (78,
147, 176–178), siderophore-mediated iron solubilization and up-
take (153, 179–181), iron transport among different oceanic en-
vironments (182), and biocorrosion (18, 69, 72, 81). Silica regen-
eration from diatom detritus (183, 184), H2 production, H2

oxidation-related energy metabolism and dark primary produc-
tion (185), as well as many other biogeochemical cycling processes
are driven by surface-associated microbial activities. The biogeo-
chemical cycling processes of almost all of the environmentally
important elements are highly complex and dynamic in the ocean,
involving both free-living and surface-associated microbiota as
drivers (186, 187). Cycles of the various elements are intrinsically
interconnected, and microbial processes foster this connectivity via
the metabolic intersection of different pathways and via functional
cooperation between different microbial groups (188). For example,
the cooperation of archaeal anaerobic methane oxidation and bacte-
rial sulfate reduction in natural microbial aggregates plays a critical
role in coupled marine C and S cycling in anoxic methane-rich envi-
ronments and thus in the control of ocean methane emissions (189–
191). Particles and biofilms in marine environments provide favor-
able niches for the coupling of different metabolic pathways and
biogeochemical cycles. Particularly in oxic marine waters, some of
these microbial processes and activities happen only within the sub-
oxic and anoxic microenvironments within particles or biofilms,
which thus define surfaces and surface-associated microbial activities
as unique niches and biogeochemical processes that differ from those
in bulk seawater (172).

Although it is generally accepted that surface-associated micro-
organisms play important roles in nutrient regeneration, element
cycling, biological productivity, and food web energetics, the con-
tributions of the surface-associated microbiota to the total micro-
bial metabolic activities in different marine ecosystems are poorly
quantified, and controversies remain. For example, metabolic ac-
tivities of the particle-associated microbiota vary widely. This has
several causes, including particle quality and quantity (16). There
are many different types of particles in the marine environment,
such as suspended riverine or sediment particles, phytoplankton
detritus, zooplankton and fish fecal pellets, aggregates, marine
snow, macrogels, transparent exopolymer particles (TEPs), mi-
crogels, and colloidal microparticles (186). These particles differ
in their origins, spatiotemporal distributions, and quality as mi-
crobial resources. The quantity of suspended riverine particles in
estuaries is directly related to the seasonal pattern of riverine dis-
charges, and these particles are usually rich in minerals and poor
in organic matter. The quantity of resuspended sediment particles
usually has both tidal and seasonal patterns in coastal waters, and
these particles are generally poor in organic matter due to long-
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term remineralization. Marine snow, fecal pellets, and phytode-
trital aggregates from algal blooms constitute the major types of
biogenic particles that contribute the most to the biological pump
export and sequestration of carbon in the ocean (16). The abun-
dance and spatiotemporal distribution of these biogenic particles,
which are rich in organic matter, depend on epipelagic primary
productivity and food webs (16). While biogenic particles consti-
tute the major colonizable surface type in open oceans, in estua-
rine and coastal seas, the surface types are usually more complex,
consisting of both biogenic and abiogenic particles, each with var-
ious age distributions. The distinct nutritional conditions of dif-
ferent surface types certainly contribute to the metabolic variabil-
ity of the surface-associated microbiota, leading to quantitative
differences in microbial activities. In addition, although individ-
ual surface-associated microorganisms are typically much larger
than free-living microorganisms, the level of activity of surface-
associated microorganisms is highly variable and sometimes, even
on a per-cell basis, lower than that of free-living microorganisms
(111, 192). Only a fraction of the surface-associated microorgan-
isms may be active at a given time or under specific environmental
conditions (129). For example, the attached microbial commu-
nity may be more active at night, while the free-living community
dominates activity during the day (114). This can be explained by
higher rates of activity of particle-associated microaerophilic
and/or anaerobic microorganisms that can be more active during
the night when dissolved O2 levels are lower due to the absence of
photosynthesis and to night community respiration (140). This
switch to more suboxic conditions may result in niche segregation
and functional separation between the surface-associated and
free-living microorganisms. In some environments, marine par-
ticles are sites of enhanced extracellular hydrolytic enzyme activity
but low substrate incorporation activity, indicating that surface-
associated bacteria may be actively dissolving particulate organic
matter (POM) without significant increases in their growth rates
(44, 118). The activities of surface-associated microorganisms also
influence the composition, abundance, dynamics, and ecophysi-
ological functions of the surrounding free-living microorganisms
via the release of nutritional resources and extracellular hydrolytic
enzymes from colonized surfaces. This contributes to distributed
networks of metabolite exchange and other forms of cooperation
that involve both surface-associated and free-living microbial
communities (105, 147, 186, 193, 194). It is clear that the variabil-
ity of biogeochemical contributions of surface-associated micro-
biota is high and should be considered in an ecosystem context.

Surface-associated microbiota may also play distinct roles at
different depths in the water column. Surface-colonizing micro-
organisms themselves participate actively in biopolymer hydroly-
sis, fixed carbon remineralization, and microbial secondary pro-
duction near the ocean surface, where they also help retain N, P,
and Fe within the upper mixed layer of marine waters (Fig. 1)
(144, 186). Based on their behavior in the water column, marine
particles can be crudely divided into two categories: sinking par-
ticles and nonsinking particles (195). While nonsinking particles
show nearly constant concentrations throughout the dark ocean,
concentrations of sinking particles such as biogenic aggregates
and fecal pellets decrease exponentially with depth (46). On the
one hand, organic matter degradation and decomposition of sink-
ing particles decrease the biological pump carbon sequestration
efficiency (43–46). On the other hand, microbial particle coloni-
zation may potentially increase the stability, the specific density,

and hence the settling velocity of the colonized sinking particles
via the production and release of polymeric substances. This mod-
erates, to a certain degree, the decomposition rate of the sinking
particles and thus the biological pump efficiency (46). Marine
snow plumes generated by surface-associated microbial activities
contain high concentrations of nutrients and dissolved organic
matter (DOM), also stimulating the activity and growth of free-
living microorganisms in the deep ocean (44, 196, 197). The sur-
face-associated and free-living microorganisms above the ther-
mocline are adapted to warm ambient temperatures, whereas in
deep waters, free-living microorganisms show optimal activity at
in situ temperatures, implying long residence at depth (198). The
distinct temperature optima of the transient deepwater surface-
associated and resident free-living microorganisms provide a rea-
sonable explanation for findings of limited species exchange be-
tween particle-associated and free-living microbial communities
throughout the water column (104, 128, 199). It seems likely that
the sinking particle-associated microbial communities are com-
posed mainly of microorganisms that originated from surface sea-
water, and they lose substantial amounts of activity in the cold
deep water (200, 201). This is consistent with observations that the
metabolic activity and growth rate of deepwater surface-associ-
ated microbial communities are usually lower than those of the
surrounding free-living microbial communities, although the sur-
face-associated microorganisms are almost exclusively responsi-
ble for the production and activity of the extracellular hydrolytic
enzymes required for nutrient and labile organic matter produc-
tion from POM. Marine snow is most abundant in surface waters
and decomposes substantially (�90%) in the twilight zone of the
water column (202, 203). The dynamics of the nutritional com-
position of sinking particles may influence the succession and
function of the surface-colonizing microbiota thereon. The ma-
rine snow particles that reach deeper waters are generally older
and more recalcitrant to microbial utilization because these par-
ticles are progressively processed as they sink, and their C/N ratios
and refractory matter percentage increase with depth (202, 204,
205). Surface colonization on these recalcitrant particles may
prove to be of little benefit to the newly colonizing microorgan-
isms. This provides an alternate explanation to the limited species
exchange found between particle-associated and free-living mi-
crobial communities in the ocean (104). The particle origin, de-
gree of decomposition, nutritional status, and environmental
temperature may determine the composition, succession, and ac-
tivity of the sinking-particle-colonizing microbial community,
which may select in favor of a surface-associated composition dis-
tinct from that of the free-living community (104). Thus, extra-
cellular enzymes are likely produced by surface water particle-
colonizing microorganisms soon after the colonization event.
While the sinking of the particles into deep water will decrease the
physiological activity of the particle-associated microorganisms
(200), the hydrolytic activities of the secreted extracellular en-
zymes may be retained (to a large extent), and thus, the resident
free-living microorganisms may have a better opportunity to uti-
lize the majority of the nutrients and organic matter released by
enzymatic hydrolysis of sinking POM (44, 196, 197). This “uncou-
pled” hydrolysis (44, 117, 206) predicts that the separation of ex-
tracellular enzyme activity from the physiological activity of the
enzyme producers and the allochthonous particle-associated mi-
crobial activity from the autochthonous free-living microbial ac-
tivity during the sinking of particles from the surface into the
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FIG 1 Key processes of the marine carbon cycle. Microorganisms colonize the surfaces of most marine organisms, such as phytoplankton, zooplankton, protists,
and fish, and marine particles, including phytoplankton detritus, zooplankton and fish fecal pellets, and marine snow. The surface-associated microbiota
participate in mutualistic or antagonistic interactions with algae or zooplankton. They also play important roles (indicated by asterisks) in the degradation and
remineralization of particulate organic matter and in the enhancement of primary production (via inorganic nutrient regeneration to fuel phytoplankton in the
euphotic zone and chemolithoautotrophic microbial communities in the aphotic zone). The surface-associated microbiota also influence long-term carbon
sequestration in the ocean via both the biological pump and the microbial carbon pump mechanisms. All the respiration terms are omitted so that the graph is
not too cluttered. Abbreviations: POC, particulate organic carbon; DOC, dissolved organic carbon.
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deeper waters may have significant implications for microbial
functions and biogeochemical processes in the deep ocean.

The distinction between surface ocean and deep ocean surface-
associated microbial activities is also related to the importance of
the surface-associated microorganisms for free-living chemo-
lithoautotrophic activity in the deep ocean. It has long been rec-
ognized that deep ocean waters maintain high levels of nitrate,
presumably produced by decomposition and nitrification (207).
Furthermore, it was recently suggested that chemolithoau-
totrophic productivity in the mesopelagic and bathypelagic zones
of the ocean may represent a substantial contribution to the
ocean’s total primary production (46, 146, 208, 209). In deep wa-
ters of the ocean, Archaea generally constitute a substantial frac-
tion (10 to 40%) of the prokaryotic community (210–212). The
deep ocean Archaea are mainly chemolithoautotrophic ammonia-
oxidizing Thaumarchaeota (211, 213–215), which may also par-
ticipate in the heterotrophic or mixotrophic uptake of organic
substrates such as amino acids and carboxylic acids (211, 216–
218). The autotrophic CO2 fixation activity of the ammonia-oxi-
dizing Thaumarchaeota has been verified in diverse marine envi-
ronments (211, 219–221), and it has been estimated that this
group of marine Archaea fixes �400 Tg C year�1 (208). Marine
ammonia-oxidizing Thaumarchaeota are also capable of produc-
ing recalcitrant organic carbon (i.e., glycerol dialkyl glycerol tet-
raether membrane lipids) (222) and may facilitate long-term car-
bon sequestration in the deep ocean and sediments (208). The
source of deep ocean ammonia is generally accepted to be decom-
posing sinking POM (142, 165, 214). Bacteria are the major pro-
ducers of extracellular enzymatic activity in the deep ocean down
to the bathypelagic layers (223), although in surface waters, ma-
rine group II Euryarchaea are also preferentially particle associ-
ated and contribute to the catabolism of HMW substrates (138).
POM enzymatic hydrolysis by Bacteria transforms marine parti-
cles into nutrient islands, with NH4

� concentrations usually being
�2 orders of magnitude higher than those in the surrounding
seawater (139, 224). Ammonia-oxidizing Thaumarchaeota likely
do not produce extracellular enzymes in sufficient quantities for
degradation of POM in the deep ocean (223) and may rely on
extracellular enzymatic activities of Bacteria for obtaining ammo-
nia for activity and growth (142, 165). Metabolic cooperation, in a
broad sense, between surface-associated Bacteria and free-living
Archaea may play a substantial role in deep ocean nitrification and
dark CO2 fixation (Fig. 1). Similarly, the release of NH4

� from
sinking particles into the water column by surface-associated bac-
terial extracellular enzymatic activities may fuel anammox-medi-
ated nitrogen loss and chemolithoautotrophic CO2 fixation in the
OMZs of the world’s oceans (225). In order to advance our un-
derstanding of the biogeochemical contributions of surface-asso-
ciated microbiota, more studies, particularly of chemolithoau-
totrophic activities, are needed.

Impacts of Surface-Associated Microbiota on Ocean Carbon
Sequestration

The settling of biogenic and physically coaggregated particles and
especially the macroscopic aggregates designated marine snow
contributes substantially to the flux of organic carbon from sur-
face seawater to the deep oceans and sediments (226, 227). Al-
though there seems to be little consistency across the world’s
oceans regarding the mechanisms that control the spatiotemporal
variability of particulate export to the deep ocean, preferential

microbial remineralization of POM P and N (versus C) is com-
monly found (228). Surface-associated microbial activities may
enhance ocean carbon sequestration by disproportionally utiliz-
ing and recycling C, N, and P. Organic matter of all descriptions is
usually the major constituent of large marine particles, which also
contain inorganic materials such as silt, clay, and calcite accumu-
lated from the surrounding water (102, 111). TEPs, formed
mainly by large, sticky, and acidic algal polysaccharides, usually
serve as the glue that facilitates large-particle formation, leading to
rapid particle sinking from surface waters to the deep ocean (229–
231). Surface attachment stimulates bacteria to produce their own
exopolysaccharides, also enhancing aggregation (232). Particulate
organic carbon (POC) contained in marine particles forms the
second largest organic carbon pool (up to 30 Pg C) in modern
oceans (233), contributing to the drawdown of atmospheric CO2

and modulation of climate variability on a global scale (43–46).
Particle-associated microorganisms have major impacts on ma-
rine POC dynamics and carbon sequestration (Fig. 1).

Although some surface-colonizing bacteria may increase dia-
tom aggregate formation, the particle sinking rate, and, thus, the
potential efficiency of the marine biological pump (234, 235), it is
commonly accepted that POC degradation by surface-colonizing
microorganisms generally decreases the carbon sequestration ef-
ficiency of the ocean (44, 46, 113, 209, 236). The extracellular
hydrolytic enzymes produced by surface-associated microbial as-
semblages usually have compositions and substrate ranges that
differ from those of free-living microbial assemblages, likely due
to differences in microbial composition (108, 237, 238). The ele-
vated quantity and activity of surface-associated hydrolytic en-
zymes are likely influenced by the involvement of the QS regula-
tory mechanism in surface-associated microbial communities
(239–241), and the higher enzyme specificity is likely due to the
capability for sensing, recognition, and regulatory responses to-
ward available substrates on the surface by specific surface-asso-
ciated microorganisms (53, 242).

Some surface-associated microorganisms possess astonishing
carbon cycling capabilities. For example, Alteromonas species are
widespread in the ocean and are common surface- and particle-
colonizing bacteria in both shallow and deep waters (243–246).
Alteromonas species are metabolic generalists capable of rapid re-
sponses to an environmental disturbance (247–249). They are also
large bacteria with large genomes and are copiotrophic, with high
specific metabolic activities. They can degrade and utilize a broad
spectrum of organic substrates, including deep-sea recalcitrant
organic matter (245, 250–252). Alteromonas produces and se-
cretes a variety of extracellular enzymes that contribute to the
hydrolysis of biopolymers, including polysaccharides (253–257),
proteins (258, 259), nucleic acids (260, 261), and lipids (262), the
major components of marine POM. Alteromonas and related spe-
cies respond rapidly to phytoplankton blooms and especially to
elevated POC concentrations (109, 263–265). Algal exudates from
a variety of phytoplankton can be utilized by Alteromonas, making
them a major microbial group in algal phycospheres (266–268).
Some Alteromonas strains also possess algicidal activity (269), re-
flecting their intimate association with marine algae. Alteromonas
sp. strain AltSIO was recently shown to be capable of utilizing as
diverse a catalog of dissolved organic carbon (DOC) substrates as
the entire in situ microbial assemblage (270). In addition to their
surprisingly high carbon cycling capability, bacteria in this group
were also found to be important in marine iron cycling and trans-
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port, an ecophysiological trait likely related to their surface asso-
ciation capabilities (182, 271). Metabolic versatility and surface
association accord the Alteromonas group bacteria great carbon
cycling potential and make these bacteria a member of the marine
master recyclers (249, 272).

The release of labile DOC from POC degradation by particle-
associated microorganisms may not only fuel the microbial loop
(198, 273, 274) but also facilitate the priming effect that stimulates
the degradation of recalcitrant organic matter (275, 276). Further-
more, deep-water microorganisms usually have large genomes
and inventories of genes contributing to surface association (199).
Higher levels of cell-specific extracellular enzymatic activity, mi-
crobial production, and cellular respiration were found to be
linked to the utilization of deep ocean recalcitrant organic matter
(277, 278), indicating an important role of particle-associated mi-
croorganisms in deep-sea carbon cycling (132, 279–281). On the
other hand, POC degradation by surface-colonizing microorgan-
isms may also release recalcitrant DOC (209), facilitating carbon
sequestration by the microbial carbon pump mechanism (Fig. 1)
(272, 282–285). DOC (up to 662 Pg C) forms the largest organic
carbon pool in the modern ocean, and a substantial fraction
(�97%) of DOC consists of refractory and ultrarefractory mole-
cules that persist for thousands of years in the marine environ-
ment (286). The quantitative contributions of surface-associated
microorganisms to the size and dynamics of the ocean’s POC and
DOC reservoirs and the influence of spatiotemporally different
environmental conditions on surface-associated microbial pro-
cesses and activities are still poorly understood, especially under
anthropogenic perturbation and global change scenarios (16,
284–286). In-depth studies of the marine surface-associated mi-
crobiota are fundamental for a mechanistic and predictive under-
standing of the marine carbon cycle.

Environmental Change-Induced Surface-Associated
Microbiota Responses and Impacts

Ocean warming and acidification induced by increasing anthro-
pogenic CO2 emission may lower the carbon sequestration effi-
ciency mediated by the biological pump (287–289). Uncertainties
remain because the complex, nonlinear behaviors of most ecolog-
ical processes and the synergistic ecosystem responses to changing
global environmental conditions (e.g., increasing temperature,
ocean stratification, ocean acidification, ocean oxygen depletion,
and ocean nutrient regime shift) are not well understood (290–
292). For example, the remineralization depth of sinking POC
becomes shallower in warmer waters, indicating that the vertical
POC flux and, thus, the carbon sequestration efficiency of the
biological pump will be attenuated with future increases in ocean
temperature (45, 293). Ocean acidification can significantly
change the ballast composition, reduce the settling velocity of
sinking particles, and thus force the sinking particles to remain in
the epipelagic and mesopelagic zones of the water column, with
longer residence times and greater microbial decomposition
(294). This may make the POC remineralization depth shallower
as well. However, ocean acidification may enhance the production
of TEPs (295), facilitating the formation of large sinking particles
and thus increasing the POC remineralization depth. Other envi-
ronmental factors can also affect the marine POC remineraliza-
tion depth, such as seawater oxygen concentration, stratification,
organic matter content and origin of the sinking particles, and
particle-colonizing microbial community composition and activ-

ity (45). Many of these factors, and particularly their synergistic
effects, are still not well studied or quantified.

As a result of the increasing impacts of anthropogenic activities
and global warming, both coastal hypoxic zones and oceanic
OMZs are expanding, and prevalent microbial biogeochemical
pathways are correspondingly being altered (296–300). Marine
particles provide suboxic and anoxic microhabitats (140, 141, 154,
281, 301), and the gradients of oxygen and other bioactive re-
sources within marine particles and biofilms support microbial
compositional and physiological heterogeneity and diversity (34,
147, 151, 153, 172). Oxygen-limited and oxygen-depleted condi-
tions facilitate various microaerophilic and anaerobic chemo-
lithoautotrophic carbon fixation and heterotrophic respiration
and fermentation processes (147, 302, 303). Different respiration
pathways have distinctly different energy conservation efficiencies
(147, 304), and hypoxic and anoxic conditions usually exert a
negative influence on respiratory efficiency and thus the carbon
sequestration efficiency of the ocean (284, 285). Furthermore, the
increasing impacts of anthropogenic activities and global warm-
ing have also caused estuarine and coastal waters (including polar
ocean coastal areas) to become more eutrophic and conversely
have caused open oceans, particularly the giant subtropical gyres
of the Pacific and Atlantic Oceans, to become more oligotrophic
(305–310). The enhanced nutrient status and elevated export
from the surface waters of sinking particles in the polar ocean
waters, and the ocean stratification effect on the increase of the
ocean’s deepwater residence time, lead to the deep oceans becom-
ing more stagnant and nutrient rich; conversely, the surface waters
of the open oceans become more oligotrophic (311, 312). The shift
of the oceanic nutrient regime, changes in oceanic circulation, as
well as ocean acidification and deoxygenation may have signifi-
cant negative impacts on ocean carbon cycling. This, on the other
hand, may exacerbate global climate change, as the ocean is the
largest active carbon sink on Earth, and its change will no doubt
disturb the atmosphere-ocean CO2 exchange balance and the car-
bon sequestration capacity of the ocean.

Substantial evidence establishes the importance of marine sur-
face-associated microbial communities in global carbon cycling.
Microbial populations are enriched on marine snow relative to
surrounding seawater free-living microorganisms, especially in
oligotrophic open oceans (106, 313), and even these oligotrophic
waters can produce very high concentrations of marine snow and
diatom mats (314, 315). This indicates that even the microorgan-
isms in oligotrophic oceanic waters have an abundance of sub-
strata, though perhaps only intermittently, to colonize. The in-
creased formation of colloidal, gelatinous, detrital, and aggregate
particles due to escalated terrigenous nutrient and organic matter
inputs and to algal and jellyfish blooms in estuarine and coastal
oceans (312, 316–319); the augmented tendency of microbial sur-
face associations in response to increasingly oligotrophic condi-
tions in the open oceans (1, 2, 6, 7, 106); the enhanced activity of
surface-associated microbiota in coastal waters of the polar oceans
due to seawater warming, permafrost melting, enhanced primary
production, and particle transport from the tundra (320, 321);
and the elevated activity of surface-associated microbiota in deep
waters due to nutrient enrichment (132, 199, 278–281) lead us to
hypothesize that surface-associated microbial communities may
play even greater roles in ocean carbon cycling under global
change scenarios. However, the mechanisms by which surface-
associated microbial processes impact the ocean’s biogeochemical
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processes and carbon sequestration capacity and the magnitude of
this impact, especially under changing environmental conditions,
are not well understood. A fundamental understanding of the
mechanisms and impacts of microbial surface colonization, bio-
film formation, and surface-associated activities in marine envi-
ronments will be required to address profoundly important ques-
tions related to global climate change.

The processes of microbial surface colonization and biofilm
community development are highly dynamic and complex. These
processes usually start with a surface-sensing step, and diverse
environmental cues are likely involved in the induction of the
initial surface attachment event. Cell surface components play im-
portant roles in subsequent irreversible surface adhesion and,
thus, true colonization. Microbial intra- and interspecies interac-
tions, including cooperation and competition, shape the routes of
community succession, biofilm development, and functional
maturation, resulting ultimately in complex microbial communi-
ties. In the following sections, we examine (i) how the microor-
ganisms sense and respond to environmental cues to initiate sur-
face colonization and biofilm development, (ii) how the
microorganisms interact with the substratum surface to carry out
the actual colonization steps, (iii) how the microorganisms coop-
erate and compete to drive the development of the surface-colo-
nizing and biofilm communities, (iv) how two key marine bacte-
rial groups succeed as key surface colonizers, and (v) future
directions in the study of surface colonization and biofilm devel-
opment.

MICROBIAL SENSING AND SIGNALING IN SURFACE
COLONIZATION AND BIOFILM DEVELOPMENT

Environmental factors play important roles in determining mi-
crobial surface colonization events (47, 60, 322–324). In general,
the interaction of microbial cells with the substratum surface un-
der specific physicochemical and nutritional conditions at the sea-
water-surface interface likely contributes substantially to the ini-
tiation and success of microbial surface colonization in marine
environments. Substratum physicochemical properties such as
surface free energy, electrostatic charge, hydrophobicity, wettabil-
ity, roughness, microtopography, and vulnerability to wear (such
as corrosibility of a metal surface) and surface chemodynamic
properties such as surface conditioning, nutrient enrichment, and
charge accumulation or alternation may influence the ability of
microorganisms to adhere to a particular abiotic surface (47, 325).
For example, environmental pH and ionic strength may alter the
surface charge of both the microorganism and the substratum
surface when they are exposed to the aquatic environment, influ-
encing microbial surface adhesion in various ways (325–327).
Nutrient limitation caused by N, P, or Fe scarcity in marine envi-
ronments may induce certain microorganisms to adapt to a sur-
face-associated lifestyle or to disperse from a biofilm to find more
favorable surfaces (2, 60, 328–332). Biofilm formation in the ma-
rine environment may play an important role in microbial selec-
tion of the optimal habitat (333, 334). In marine vibrios, certain
components of the pathways of catabolite repression (modulating
cellular responses to high-energy-carbohydrate availability), the
stringent response (modulating the use of available resources in
response to low-nutrient stress such as amino acid, fatty acid, or
iron starvation), and nucleoside scavenging (modulating nucleo-
side uptake and catabolism in response to environmental nucleo-
side scarcity) exert regulatory effects on surface colonization

and/or biofilm formation (335–340). The adaptations required
for successful surface colonization certainly include the ability to
detect and respond to surface-related cues.

Microorganisms utilize a variety of sensing mechanisms to
adapt to and exploit changing (micro)environments (341). The
environmental cues may be physical (the surface as a diffusion
barrier or potential energy barrier), chemical (redox potential,
conditioning film composition, adsorbed nutrients, metaboliz-
able substrates, and electron donors and acceptors), or physico-
chemical (microviscosity and water activity) (47). Known envi-
ronmental cues that attract individual microorganisms to surfaces
are diverse, particularly including high inorganic and organic nu-
trient levels, the availability of electron donors and acceptors, and
hydrodynamic conditions (342). Sensing may be the necessary
first step for marine microorganisms to establish a surface-associ-
ated lifestyle, and thus, microbial surface sensoritomes play a crit-
ical role in the primary interactions between the microbial cell and
the surface that is colonized (343, 344).

Microbial Two-Component Signal Transduction Systems

Two-component signal transduction systems (TCSs) are very
common in both Bacteria and Archaea (284, 345, 346). These sys-
tems enable microorganisms to constantly sense and respond to
environmental changes and stresses, such as those caused by the
availability of inorganic nutrients and metabolizable organic sub-
strates, temperature, pH, O2, redox potential, light intensity, os-
molarity, and toxins, including reactive oxygen and nitrogen spe-
cies as well as other substances (347). Upon activation by an
environmental stimulus via a specific TCS sensor histidine kinase
(HK) component, the cognate TCS response regulator (RR) com-
ponent may induce the binding of a regulatory molecule to DNA,
RNA, or protein or cause an increase in enzymatic activity (348).
These responses lead to changes in cellular transcriptional, enzy-
matic, or mechanistic properties and alterations in microbial
physiology and/or behavior (346, 349). For example, the genome
of Vibrio cholerae O1, frequently isolated from estuarine and
coastal environments and a causative agent of Asiatic cholera, har-
bors 43 HK and 52 RR genes (350). Twelve of these RRs were
found to have a role in host colonization (350). In addition, V.
cholerae O1 employs the VpsS hybrid HK and the VpsR and VpsT
RRs to regulate the production of the exopolysaccharide VPS
(Vibrio polysaccharide) that enables the formation of biofilms and
consequent resistance to oxidative stress and chlorine biocidal ac-
tivity (9, 351–354). In Vibrio fischeri, the RscS and SypF HKs were
found to play an important role in inducing symbiotic biofilm
formation and squid colonization via the SypE and SypG RRs that
modulate the transcription of the symbiosis polysaccharide (syp)
locus (355). A V. cholerae VpsR homologue also modulates V.
fischeri polysaccharide production and biofilm formation via a
putative cellulose biosynthesis locus found only in this vibrio spe-
cies (9). TCSs are also employed by other vibrio species to regulate
extracellular polysaccharide production and biofilm formation,
although the exact mechanisms may be slightly or even substan-
tially different in different organisms (9). Systematic studies of the
TCSs in Pseudomonas aeruginosa, an opportunistic pathogen and
an environmental bacterium found frequently in coastal waters
and sometimes even in open oceans (356–358), have confirmed
that biofilm formation is a highly regulated process that proceeds
through a number of distinct stages (347). An array of TCSs play a
key role in the regulation of the production of extracellular ap-
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pendages, such as flagella, type IV pili, and Cup fimbriae, that are
often involved in P. aeruginosa initial surface attachment as well as
the production of extracellular exopolysaccharides, such as Pel
and Psl, that are required for subsequent P. aeruginosa biofilm
formation (347).

The Escherichia coli osmosensing EnvZ/OmpR system and the
cell envelope disturbance-sensing CpxA/CpxR system were
among the first TCSs indentified as important sensing, signaling,
and regulatory mechanisms for bacterial surface colonization and
biofilm formation (359). The nutritional and ionic enrichment
that is generally observed on submerged surfaces creates a micro-
habitat that has higher osmolarity than that of the surrounding
aquatic environment (6, 144, 347). The EnvZ/OmpR and CpxA/
CpxR systems provide a mechanism to promote the microbial
response to such an osmolarity gradient (i.e., a nutrient gradient)
and to promote microbial surface attachment (360). Homologues
of the EnvZ/OmpR and CpxA/CpxR TCSs have been identified in
marine bacteria, including V. cholerae (361, 362). However, these
TCSs have been found to play a minimal role in the regulation of
V. cholerae surface colonization and biofilm formation (15, 362).
Instead, the OscR and CosR osmolarity-responsive regulators
were found to play a major role in regulating osmolarity- and
salinity-induced V. cholerae biofilm physiology (362–364). There-
fore, marine and nonmarine bacteria may employ different mech-
anisms to regulate osmolarity-responsive surface colonization
and biofilm formation due to environmental and evolutionary
differences.

Many TCSs in environmental microorganisms are related to
sensing and adaptive responses to inorganic nutrients and metab-
olizable organic substrates, such as organic acids, sugars, and
amino acids (365–367). For example, the extracellular sensors of
the TCS PhoQ, DcuS, CitA, and AbfS, involved in monitoring
environmental divalent ions such as Ca2� and Mg2�, C4-dicar-
boxylic acids, citrate, and oligosaccharides, respectively (366),
may help the microorganisms to detect a favorable surface based
on nutrient enrichment. The phosphate-responsive PhoR/PhoB
system involved in high-affinity phosphate-specific transport reg-
ulation under P starvation conditions is a common TCS in bacte-
ria (368). This TCS is also involved in surface colonization, bio-
film formation, or microbial dispersion from biofilms in some
marine bacteria (330, 331, 369). In marine Pseudoalteromonas pi-
scicida isolates, the CdsS/CdsR TCS regulates the expression of
genes involved in chitin degradation (370), which is facilitated by
bacterial surface colonization. In V. cholerae, the expression of
chitin-inducible genes, including those involved in chitin degra-
dation and utilization, chemotaxis, surface colonization, and nat-
ural competence, is modulated by the orphan TCS sensor kinase
ChiS (371, 372). Chitin is the most abundant nitrogenous poly-
saccharide in the ocean and can be degraded and utilized by many
marine bacteria (373). N and P are inarguably the most important
macronutrients in the ocean, controlling the ocean’s primary and
secondary productivity, carbon sequestration, and many other
biogeochemical functions and ecosystem services (297, 374–379).
How surface-associated microorganisms, using putatively diverse
regulatory pathways, respond to and influence the ocean’s chang-
ing N and P regimes warrants in-depth investigation.

TCSs exist in �95% of Bacteria and �50% of Archaea. Micro-
bial genome sequencing has identified a great number of TCSs, yet
the functions and environmental stimuli of most of these systems
have not been determined. The MiST2.2 Microbial Signal Trans-

duction Database (last accessed 10 October 2014) predicted
421,394 gene sequences that encode TCS proteins (not including
chemotactic proteins) from a total of 7,937 (complete and draft)
bacterial and archaeal genomes (380). The P2CS (Prokaryotic
2-Component Systems) database (last accessed 10 October 2014)
predicted 164,651 gene sequences that encode TCS proteins, in-
cluding 74,029 HKs and 81,882 RRs (381). On average, a single
microbial species usually possesses �50 TCSs (382), and some
bacteria possess hundreds of TCSs operating in parallel for the
adaptive response to diverse environmental conditions (365). For
example, Vibrio parahaemolyticus O1:Kuk strain FDA_R31 alone
may harbor 497 TCS proteins, based on predictions of the
MiST2.2 database. Microorganisms that live in rapidly changing
environments typically possess a large number of TCSs, and the
number of TCSs that a microorganism can possess appears to
correlate with its habitat’s environmental complexity and niche
diversity (346). It is reasonable to hypothesize that the marine
microorganisms that are capable of major changes in lifestyle
(such as the transition from the motile to the sessile lifestyle and
vice versa) may harbor large numbers of TCSs functional in both
free-living and surface-associated activities and in the transitions
between these two lifestyles.

Microbial Chemotaxis

Chemotaxis systems coordinate the sensing, signaling, and re-
sponsive motility of a bacterium or archaeon in response to chem-
ical attractants or repellents (383) and are among the most thor-
oughly studied TCSs (384–386). Many marine microorganisms
(up to 80%) are motile, especially in highly productive circum-
stances, such as the organic particle- and nutrient-enriched con-
ditions that occur during algal bloom crashes (387–389). Motility
is a physiological and behavioral trait usually linked to the re-
sponse to environmental gradients (341). It is reasonable to hy-
pothesize that a large fraction of aquatic microorganisms are che-
motactic, although they tend to attach if a suitable surface exists
(390). The MiST2.2 database (last accessed 10 October 2014) pre-
dicted 90,807 chemotaxis protein-encoding gene sequences from
a total of 7,937 (complete and draft) bacterial and archaeal ge-
nomes (380).

The microbial chemotactic apparatus is highly sensitive, sens-
ing and responding to as little as a 3 nM change in the concentra-
tion of an environmental chemical stimulus (391). Chemotaxis is
used by environmental bacteria not only for increased acquisition
of organic substrates but also for enhanced uptake of inorganic
nutrients (392). Thalassospira sp. was found to be chemotactic
toward inorganic phosphate during starvation, a behavior consis-
tent with its natural habitat of the ultraoligotrophic eastern Med-
iterranean Sea (393). A recent study showed that coral surface-
associated bacteria exhibited significantly higher levels of
chemotaxis than free-living bacteria in nearby non-coral-associ-
ated waters (394). Numerous processes, such as cell lysis, phyto-
plankton exudation, animal excretion, food vacuole egestion, and
particle degradation and dissolution, provide point sources rich in
organic substrates and inorganic nutrients in marine waters (186,
392, 395). Chemotaxis toward marine particles or their nutrient
plumes may facilitate carbon and nutrient cycling and the micro-
bial loop (393).

Chemotactic responses driven by environment sensing and di-
rected motility have frequently been proposed to facilitate micro-
bial surface attachment (3, 6, 8, 47, 338, 392, 396–398). Results to
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date show that chemotaxis can be important (399–405), advanta-
geous (406), or dispensable (407) for initial surface colonization,
indicating possible species- or strain-specific differences in the
role of chemotaxis in microbial surface interactions or surface- or
environment-specific differences in microbial chemotactic re-
sponses. Energy taxis can also be important to surface coloniza-
tion by certain bacteria (408–411). The microenvironment near a
submerged surface is highly heterogeneous in that multiple gradi-
ents exist, including gradients of oxygen, pH, osmolarity, electron
donors, electron acceptors, metabolizable substrates, redox po-
tential, and chemical cues, including chemotactic attractants or
repellents (34). Most studies showing a positive effect of taxis on
bacterial surface colonization employed biotic surfaces, with only
a few cases in which abiotic surfaces were also tested (402, 404).
Thus, we hypothesize that there are threshold concentrations of
taxis signals, which dictate the initiation of the microbial attach-
ment response driven by the chemotactic or energy taxis mecha-
nisms. A submerged abiotic, inert surface likely does not satisfy
this requirement, as the taxis signals in the environment near such
a surface may not achieve high enough concentrations to induce
the tactic response, even considering the accumulation of the con-
ditioning film on the surface.

Microbial Quorum Sensing

Many Bacteria and Archaea employ QS as a specialized intraspe-
cies and interspecies communication mechanism for population
density-dependent sensing, signaling, and responsive adaptation
(412–417). A typical QS pathway is characterized by the produc-
tion, release, and detection of small signal molecules collectively
called autoinducers, resulting in coordinated behavior once a suf-
ficient signal concentration, reflecting a sufficient quorum size, is
reached. QS is a common strategy to achieve a group benefit and
coordinated behavior in the prokaryotic world and is particularly
important for surface- and biofilm-living microorganisms that
often reach high densities (417).

QS plays important roles in regulating initial microorganism-
surface interactions, microbial surface attachment, initiation of
biofilm formation, and biofilm development (33). V. fischeri har-
bors three distinct QS systems (i.e., AinS/AinR, LuxI/LuxR, and
LuxS/LuxPQ); however, only the AinS/AinR system is involved in
the modulation of the initial steps of surface colonization, and
only the AinS/AinR and LuxS/LuxPQ systems are involved in the
modulation of subsequent biofilm development (418, 419). V.
cholerae harbors four distinct QS systems (i.e., CqsA/CqsS, LuxS/
LuxPQ, CqsR, and VpsS), and they all participate in the modula-
tion of surface colonization and biofilm formation (420). Func-
tional redundancy of the four QS receptors is employed by V.
cholerae to prevent premature induction of a QS response that
may be caused by signal perturbations (420). The QS systems in V.
fischeri assist in establishing a symbiotic relationship between the
bacterium and its host, Euprymna scolopes, while the QS systems in
V. cholerae contribute to making this bacterium a deadly pathogen
to humans.

QS autoinducers were found to enhance cell adhesion to sulfur
and pyrite surfaces by Acidithiobacillus ferrooxidans (421), a
chemolithoautotrophic bacterium that carries out CO2 fixation
coupled to ferrous iron and sulfur oxidation (422, 423). Extracel-
lular polymeric substances (EPSs) identified as lipopolysaccha-
rides appear to be a prerequisite for A. ferrooxidans attachment to
pyrite and sulfur (424), and their biosynthesis is likely controlled

by the cellular QS mechanism (425). Interestingly, A. ferrooxidans
harbors two QS systems (426). A Lux-like system is upregulated
when A. ferrooxidans is grown in sulfur medium (427, 428), while
an Act-based system is upregulated when A. ferrooxidans is grown
in medium containing iron instead of sulfur (426). Thus, it has
been suggested that the two QS systems respond to different en-
vironmental signals that may be related to the abilities of A. fer-
rooxidans to colonize and use different solid sulfur- and iron-
containing minerals (426).

FeOB and SOB are important participants in the biogeochemi-
cal cycling of iron and sulfur, bioleaching of metal ores, and bio-
corrosion of metals (18, 78, 99, 178, 429–431). Most of the FeOB
and SOB are microaerophiles that prefer low-oxygen conditions
for chemolithoautotrophic CO2 fixation, and some of them are
facultative anaerobes that can carry out iron and sulfur oxidation
by using alternative terminal electron acceptors such as nitrate
and nitrite instead of oxygen (99, 133, 178, 429, 430, 432, 433).
QS-related genes have recently been identified in sulfur-oxidizing
Gammaproteobacteria and Epsilonproteobacteria and in in situ bio-
films of deep-sea hydrothermal vents (434, 435). QS may help
FeOB and SOB colonize surfaces to obtain inorganic Fe and S
substrates and establish optimal niches within biofilms (436, 437).
In seawater, particles may be a rich source of reduced iron (147,
177, 181, 186, 301, 438, 439) and reduced sulfur (133, 140, 141,
147). QS-mediated microbial surface colonization and biofilm
formation may play an important role in the biogeochemical cy-
cling of Fe and S in marine environments.

QS autoinducers and/or their synthetic genes have been found
in marine microbial mats, subtidal biofilms, deep-sea hydrother-
mal vent biofilms, and marine organic particles (239–241, 435,
440, 441), indicating that QS may be common in marine surface-
associated microbial communities. QS autoinducers modulate the
production and activity of extracellular hydrolytic enzymes (e.g.,
lipases, aminopeptidases, and phosphatases) in marine snow- or
Trichodesmium colony-associated microbial communities (240,
241, 442). The liberation of dissolved nutrients and organic sub-
strates may benefit surface-associated microorganisms, as well as
Trichodesmium bacteria themselves for CO2 and N2 fixation, es-
pecially in oligotrophic environments. Diverse and novel autoin-
ducer synthase genes have been identified in the Global Ocean
Sampling metagenomic database, which covers 68 stations across
three oceans (443). Many environmentally important microor-
ganisms, including ammonia-oxidizing, nitrite-oxidizing, anam-
mox, denitrifying, nitrogen-fixing, and sulfur-oxidizing bacteria
as well as methanogenic Archaea, employ QS systems (416, 435,
444–448). The Proteobacteria are the predominant QS autoin-
ducer producers in natural environments (449). More than 80%
of MRC bacteria harbor QS regulatory systems (8, 173, 272, 450,
451). It has been hypothesized that QS contributes to the surface
colonization success of MRC bacteria (8), likely because sub-
merged surfaces in seawater may serve as a source of organic nu-
trients that attract MRC bacteria and support growth to levels
sufficient to support density-dependent QS regulation (450). In
addition to its role as an important regulatory mechanism for
initial microbial surface colonization, QS may also participate in
mediating the interactions of surface colonizers. Autoinducer-2
molecules, an important family of QS signal compounds, are syn-
thesized by many bacteria and appear to facilitate interspecies
communications (452). These QS signals may be employed by
certain pioneer surface-colonizing bacteria to alter the composi-
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tion and structure of the primary colonizer community and influ-
ence the subsequent succession of other microbial species on sur-
faces (452). A recent study has shown that a MRC bacterium
promotes initial colonization and biofilm formation by other ma-
rine bacterial species via extracellular factor secretion (453). How-
ever, whether this extracellular factor is a QS autoinducer and
whether the MRC QS systems are involved in the sequential suc-
cession of surface- and biofilm-associated microbial communities
in marine environments remain to be determined.

Posttranscriptional Regulation by Small RNAs

Small RNAs (sRNAs), a group of noncoding regulatory RNAs,
usually with lengths of 25 to 500 nucleotides, are an important
type of regulator that binds to mRNA or proteins to modulate
translation in diverse microbial physiological processes (454).
sRNAs interact with TCSs, the primary mechanism for effective
sensing of environmental cues in microorganisms, to form exten-
sive regulatory networks (455). Many TCSs, via the regulation of
sRNAs, control target gene expression with enhanced signaling
flexibility, dynamics, and timing; conversely, via sRNA regulation,
certain TCS regulons can be recruited into other regulatory net-
works, such as the QS systems, forming a sRNA-mediated feed-
back loop to achieve fine-tuning of gene regulation and homeo-
static control of the involved regulators (455). The intrinsic
interconnection of the sRNA, TCS, and QS regulatory systems
implicates the sRNAs in microbial surface interaction and biofilm
formation.

Experiments have shown that members of the CsrB family of
sRNAs, coordinating with the global regulator CsrA (or its homo-
logue proteins) and certain related TCS and QS regulators, play
central roles in modulating the switch between motile and sessile
bacterial lifestyles, although the precise roles may vary in different
bacterial species (454). In V. cholerae, the VarS/VarA TCS; CsrA;
and the CsrB, CsrC, and CsrD sRNAs regulate the activity of the
QS response regulator LuxO (456), which can also be activated
(phosphorylated) by the QS autoinducer-free sensor kinase pro-
teins CqsS and LuxQ via the phosphotransfer protein LuxU (457).
At a low cell density, phosphorylated LuxO activates the expres-
sion of four qrr (quorum-regulatory sRNA) genes that encode the
sRNAs Qrr1 to Qrr4, which redundantly promote the translation
of AphA (the low-cell-density QS master regulator), inhibit the
translation of HapR (the high-cell-density QS master regulator),
and activate the translation of Vca0939, stimulating biofilm for-
mation (49, 458–460). In Vibrio harveyi, phosphorylated LuxO
activates the expression of five qrr genes encoding the sRNAs Qrr1
to Qrr5, which additively promote the translation of AphA and
inhibit the translation of LuxR (homologue of HapR), likely re-
sulting in reduced biofilm formation, however (49, 460). Al-
though the Qrr sRNAs seemingly participate in similar regulatory
pathways in V. cholerae and V. harveyi (460), the collective actions
(redundant versus additive) of the involved Qrr sRNAs and their
ultimate effects (stimulation versus inhibition) on biofilm forma-
tion are different (49, 457, 461–463). In addition, some Vibrion-
aceae, such as V. fischeri and Photobacterium angustum, have only
Qrr1, likely adding more variation to sRNA regulatory outcomes
(460).

Recently, the sRNA VqmR has been identified as another regu-
lator of biofilm formation in V. cholerae (464). The transcription
of the vqmR gene is activated by the VqmA DNA-binding tran-
scription factor, and VqmR directly modulates at least eight

mRNA targets, including the vpsT transcriptional regulator of
biofilm production (464). The vpsT regulator is also targeted by
the histone-like nucleoid structuring protein H-NS, providing an-
other layer of regulation of biofilm production by V. cholerae (15,
465). Besides the exopolysaccharide VPS, the expression of three
biofilm matrix proteins, RbmA, RbmC, and Bap1, is also required
for biofilm formation and structure in V. cholerae (15, 402, 466).
These proteins facilitate biofilm formation at particular steps:
RbmA is capable of binding the exopolysaccharide VPS and
strengthening early cell-cell adhesion, Bap1 facilitates biofilm ad-
hesion and recruits planktonic cells to the surface, and Bap1 and
RbmC encase cell clusters that are attached to the surface (467–
469). The type II secretion system (T2SS) delivers these biofilm
matrix proteins for biofilm formation in V. cholerae (470). The
expression of these biofilm matrix proteins involves regulation by
the cyclic AMP (cAMP)-cAMP receptor protein (CRP) complex
and the transcriptional regulator VpsR (471, 472). However, the
expression of RbmC can bypass the global master regulators, vir-
tually through direct regulation by the sRNA VrrA, the expression
of which is in turn modulated by the alternative RNA polymerase
sigma factor �E (473). Biofilm formation, as well as motility and
chemotaxis in V. cholerae, also involves the sRNA RyhB that is
negatively regulated by iron and the ferric uptake regulator Fur
(474). Multiple sRNAs, as well as other regulatory pathways, pro-
vide V. cholerae with both specific and adaptable control over
biofilm formation, a mechanism that is important for a versatile
and error-proof response to the diverse environmental cues that
can induce surface-associated living. sRNAs in other marine bac-
teria have received little attention, and many new mechanisms
and pathways may await discovery (344, 475).

Centralized Regulation by Second Messengers

Second messenger molecules are employed in many microbial en-
vironmental signaling pathways to relay external signals from
membrane receptors to intracellular effectors (476). cAMP, the
first second messenger described, participates in the cAMP-CRP
regulatory network, which exerts global control over key cellular
physiology processes, including the production of flagella, micro-
bial motility, cell surface hydrophobicity, quorum sensing, type
IV pilus expression, surface attachment, and biofilm formation
(27, 338, 476–479). Cyclic di-GMP (c-di-GMP) is another key and
ubiquitous second messenger molecule in prokaryotes, playing
central roles in microbial signaling and adaptability (480). Despite
the tremendous diversity of microbial components and processes
and mechanisms that are involved in the switch from the plank-
tonic to the sessile lifestyle, most bacteria examined to date em-
ploy c-di-GMP as the central regulator to control surface coloni-
zation and biofilm formation (480–482). For example, Ruegeria
mobilis, a member of the MRC, employs the c-di-GMP regulatory
pathway to modulate biofilm formation and antibiotic produc-
tion (483). In Agrobacterium tumefaciens, c-di-GMP activates, in a
surface contact-dependent manner, enhanced production of the
unipolar polysaccharide adhesin, which is functionally equivalent
to a holdfast, for integrated control of the switch from a motile to
a sessile lifestyle (484, 485). The environmental bacterium She-
wanella oneidensis MR-1, which harbors a number of respiratory
pathways, including the anaerobic reduction of iron(III), manga-
nese(IV), and uranium(VI), forms biofilms on mineral surfaces
through a process controlled by c-di-GMP (486). The marine bac-
terium Shewanella woodyi also employs the c-di-GMP signaling
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pathway for controlling biofilm physiology (487). The c-di-GMP
signaling pathway may play a key role in A. ferrooxidans biofilm
formation and bioleaching of minerals (488), whereas diverse c-
di-GMP signaling pathways control the switch between predatory
and nonpredatory lifestyles of Bdellovibrio bacteriovorus, which
preys upon other Gram-negative bacteria on surfaces and within
biofilms (489). The intracellular c-di-GMP concentration is reg-
ulated by GGDEF domain-containing diguanylate cyclases
(DGCs) that catalyze c-di-GMP synthesis from two molecules of
GTP and by c-di-GMP-specific EAL or HD-GYP domain-con-
taining phosphodiesterases (PDEs) that catalyze c-di-GMP hy-
drolysis (480). Bacteria usually contain multiple DGCs and PDEs.
For example, the V. cholerae genome contains �60 genes pre-
dicted to encode distinct c-di-GMP-modulating DGCs and PDEs
for a flexible environmental response and high-fidelity signaling
(490). The c-di-GMP regulatory pathways are involved in modu-
lating the expression of type IV pili, the exopolysaccharide VPS,
and T2SS-facilitated secretion of biofilm matrix proteins, playing
important roles in surface colonization and biofilm formation by
V. cholerae (470, 491). Surface-associated bacteria usually harbor
more c-di-GMP regulators than free-living bacteria, presumably
as an adaptive strategy (120). O2, H2O2, NO, redox potential, light,
sucrose, amino acids, polyamines (such as norspermidine and
spermidine), Zn2�, bile acids, bicarbonate, indole, QS autoinduc-
ers, cis-2-dodecenoic acid and cis-11-methyl-dodecenoic acid
(unsaturated fatty acids that serve as bacterial diffusible signal
factors), and nutritional conditions that cause starvation (or de-
pletion of a specific carbon source such as glucose or glycerol)
have been identified as environmental cues that induce the bacte-
rial response via altering the intracellular c-di-GMP concentra-
tion (480, 492–508). However, the vast majority of the environ-
mental signals that modulate the activity of the DGCs and PDEs
remain unidentified.

Multiple sensory transduction pathways, including mainly QS
(as well as TCSs and chemotaxis), that sense a vast array of extra-
cellular signals have been found to interact with the c-di-GMP
intracellular regulatory networks to influence microbial biofilm
formation (330, 480, 509–511). The second messenger- and
sRNA-mediated signaling pathways are also interconnected. A re-
cent study indicates that the V. cholerae Vca0939 protein is a
diguanylate cyclase, and its translation is activated at low cell den-
sity by the Qrr sRNAs, leading to c-di-GMP accumulation and
thus enhanced VPS-dependent biofilm formation (512, 513). The
cAMP signaling pathway also interacts with the c-di-GMP path-
way, playing a role in regulating V. cholerae biofilm formation
(472). The c-di-GMP signaling mechanism represents a unifying
principle governing the microbial switch from a planktonic to a
sessile lifestyle (514, 515).

An Example of Microbial Interaction with Surfaces: Vibrio
Chitin Utilization and Its Implications

Chitin is the most abundant biopolymer in aquatic environments
and a major component of marine snow (166, 193, 516). About
1011 metric tons are produced annually as marine detritus (120,
164). Chitin is highly insoluble, but its degradation products rep-
resent an abundant source of carbon, nitrogen, and metabolic
energy for microbial communities. Chitin utilization constitutes a
key pathway in global carbon and nitrogen cycling (186, 193), and
this polymer also provides a surface for vibrios to colonize, par-
ticularly under adverse environmental conditions (516–520).

The utilization of chitin by vibrios involves multiple levels of
gene regulation that govern motility, chemotaxis, extracellular
polysaccharide and biofilm matrix protein synthesis and secre-
tion, type IV pilus production, chitin-binding protein secretion,
chitin surface attachment, biofilm formation, extracellular chiti-
nase secretion, chitoporin expression, and competence (166, 338,
470, 520–523). Association with insoluble materials may be the
preferred lifestyle of vibrios, including deep-sea hydrothermal
vent species (15, 403, 524), and regulatory systems involving
TCSs, chemotaxis, QS, sRNAs, cAMP, c-di-GMP, alternative
sigma factors, and the stringent response enable vibrios to opti-
mize resource utilization and survival (Fig. 2) (49, 339, 472, 475,
511, 518, 525–529).

Vibrio chitin utilization and biofilm formation are also regu-
lated by the phosphoenolpyruvate:sugar phosphotransferase sys-
tem (PTS) (337, 530), which catalyzes the transport and phos-
phorylation of numerous monosaccharides, disaccharides, amino
sugars, polyols, and other sugar derivatives and possesses diverse
regulatory functions related to processes such as chemotaxis, de-
tection of QS molecules, virulence, potassium transport, and me-
tabolism of carbon, nitrogen, and phosphorus (531, 532). Vibrios
are strongly chemotactic toward several PTS substrates, including
N-acetylglucosamine, trehalose, glucose, sucrose, mannose, and
mannitol (164, 166, 533). Mannitol is of particular interest, as it
enhances V. cholerae biofilm formation by activating, via the PTS,
the transcription of the VPS exopolysaccharide synthesis genes
(333). Mannitol is a common compatible solute and osmopro-
tectant and a primary photosynthetic product and carbon reserve
compound of brown algae (534). Mannitol and its induction of
biofilm formation provide V. cholerae additional fitness advan-
tages in the highly variable marine environment. This also implies
that biofilm formation induced by chitin or its degradation prod-
ucts may proceed through the PTS regulation pathway in other
chitin-utilizing marine bacteria.

In addition to chitinous detritus and live zooplankton and their
carcasses and molts, vibrios are frequently enriched on other ma-
rine particles or surfaces, such as marine snow, fecal pellets of
zooplankton, and detritus from the demise of phytoplankton and
jellyfish blooms (70, 172, 518, 535–538). It has also been estimated
that there are 5.25 trillion plastic particles weighing 268,940 tons
afloat at sea (539, 540). Some of the “plastisphere” components,
such as polypropylene, are preferentially colonized by vibrios
(541).

Although vibrios are usually detectable and sometimes abun-
dant in coastal and brackish waters, especially in eutrophic envi-
ronments, they are usually subdominant and opportunistic bac-
teria (247, 535, 542). Marine vibrios in natural biofilms may
contribute to inducing the settlement of invertebrate larvae (543).
In addition, vibrios are common producers of auxins such as in-
dole-3-acetic acid (544), likely playing a role in stimulating the
activity (such as mucus exudation) of marine algae and the for-
mation of vibrio-alga associations (545). Surface association not
only increases vibrio survival and fitness but also increases oppor-
tunities for vibrio intraspecies and interspecies exchanges of
genes, including those for the utilization of unusual substrates and
for virulence (15, 546–549). Such exchanges are supported by sur-
face-induced natural competence and likely involve plasmids,
phages, transposons, integrons/gene cassettes, and perhaps other
horizontal gene transfer mechanisms (550–552). QS-mediated
biofilm formation can include large numbers of toxigenic V. chol-
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erae bacteria, usually in the viable-but-nonculturable (VBNC)
state (33, 553, 554). Such biofilm-associated V. cholerae bacteria
are more virulent than their free-living counterparts (512, 553,
555, 556), and VBNC V. cholerae can be resuscitated by QS auto-
inducers (557), which also promote horizontal gene transfer to V.
cholerae in multispecies biofilms (558). QS-regulated chitin me-

tabolism also enhances the resistance of V. cholerae biofilms
against heterotrophic protist grazing (559). These properties of
biofilm vibrios exacerbate the impacts of vibrios on human health
and greatly increase difficulties in monitoring pathogenic vibrios
in marine environments. Furthermore, the increasing persistence
and dissemination of vibrios in aquatic environments and the in-

FIG 2 Interacting sensing, signaling, and regulatory pathways important for the Vibrio cholerae sessile lifestyle. Diverse environmental cues such as chitin
disaccharide and oligosaccharides, bile acids (not shown), nitric oxide, norspermidine (not shown), spermidine, carbon source depletion, and population size
signals (such as the autoinducers cholerae autoinducer 1 [CAI-1] and autoinducer 2 [AI-2]) are sensed and processed by V. cholerae, which employs signal
transduction sensor kinases (such as ChiS, VarS, LuxQ, CqsS, CqsR, VpsS, and HnoK) and response regulators (such as LuxO, VarA, HnoB, HnoD, TfoX, VpsR,
and VpsT); the quorum-sensing master transcriptional regulators AphA and HapR; small RNAs (such as CsrB, CsrC, CsrD, Qrr1 to -4, and TfoR); and the RNA
chaperone Hfq, cAMP, and c-di-GMP for signal relay and response regulation. The type IV pili are involved in initial surface attachment. The activated
production of VPS (Vibrio polysaccharide) (the major component of the V. cholerae biofilm matrix) and biofilm matrix proteins contributes to biofilm
formation. It is evident that most regulatory pathways converge on c-di-GMP, which plays a central role governing the microbial switch from the planktonic to
the sessile lifestyle. There are some other surface- and biofilm-related sensing, signaling, and regulatory pathways, such as the CqsR and VpsS QS pathways that
are functionally redundant to the CqsA/CqsS and LuxS/LuxPQ QS pathways, the chemotactic pathway that senses extracellular chitin disaccharide and
oligosaccharides and modulates bacterial tactic movement toward chitin surfaces for efficient colonization and chitin utilization, the stringent response
regulatory pathway that maximizes the use of available resources in response to various low-nutrient stresses, the nucleoside scavenging-and-signaling pathway
for regulating natural competence, and the pathways mediated by H-NS and alternative sigma factors, which are not shown in order to avoid cluttering. LCD, low
cell population density; HCD, high cell population density; LuxS, autoinducer-2 synthase; LuxP, autoinducer-2 periplasmic binding protein; LuxQ, autoin-
ducer-2 membrane-bound sensor histidine kinase; CqsS, CAI-1 membrane-bound sensor histidine kinase; LuxU, autoinducer phosphorelay protein; LuxO,
LuxU cognate response regulator; CBP, chitin-binding protein; NspS, periplasmic spermidine-binding protein; HnoX, NO sensor protein; OM, outer mem-
brane; IM, inner membrane; CsrA, global posttranscriptional regulatory protein that activates LuxO via an unidentified regulatory factor (denoted “?”); Qrr,
quorum regulatory small RNA; Hfq, RNA-binding and chaperone protein; cAMP-CRP, cAMP-cAMP receptor protein complex; Fis, factor for inversion
stimulation, a small nucleoid protein; PTS, phosphoenolpyruvate phosphotransferase system; CyaA, adenylate cyclase that synthesizes cellular cAMP; VCA0939,
CdgA, and the GGDEF domain of MbaA, diguanylate cyclases that synthesize cellular c-di-GMP; HnoB and the EAL domain of MbaA, phosphodiesterases that
degrade c-di-GMP; HnoD, protein containing a degenerate phosphodiesterase functioning as an HnoB allosteric inhibitor; VpsR and VpsT, transcriptional
regulators that modulate VPS synthesis, with VpsR also being a regulator of V. cholerae biofilm matrix protein synthesis; T2SS, type II secretion system; com, msh,
rbm, and vps, gene operons for chitin-induced natural competence, type IV pilus production, biofilm matrix protein production, and VPS production,
respectively. This figure is drawn based on information reported previously (15, 49, 51, 338, 414, 420, 470–472, 475, 491, 500, 505, 511, 512, 527).
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creasing incidence of human vibrio illnesses worldwide are linked
to phytoplankton blooms, ocean warming, and the capacity of
vibrios to colonize surfaces (15, 265, 560–564). Higher tempera-
ture also significantly increases population abundance and up-
regulates virulence determinants such as motility, resistance to
antimicrobial compounds, hemolysis, and cytotoxicity in coral
pathogens (565, 566). Surface-living vibrios are thus important
not only in global carbon and nitrogen cycling but also in human
and marine animal health. How vibrio ecophysiology, biogeo-
chemical function, and pathogenicity may respond to, react with,
and evolve in response to the impact of global climate change,
ocean acidification, and ocean deoxygenation warrants further
investigation.

MICROORGANISM-SURFACE INTERACTIONS IN SURFACE
COLONIZATION

Surfaces once submerged in marine waters are rapidly colonized,
and subsequent biofilm formation follows a sequence of chemical
and biological events. These events may include the rapid forma-
tion of an initial “conditioning film,” colonization by pioneer mi-
croorganisms (usually bacteria), recruitment of secondary colo-
nizers and growth of microcolonies, and development and
maturation of biofilm architecture and the biofilm microbial
community (17, 22, 397, 567–569). Chemical interactions of sol-
utes with substratum surfaces, biological interactions of microbial
cells with surfaces and other microbial cells, and specific gene
regulation events at the individual, population, and community
levels may play important roles in microbial surface colonization,
modification of surface physicochemical properties, structured
biofilm development, and establishment and maturation of func-
tional communities.

Surface Conditioning Film Formation and the “Masking
Effect”

Almost any kind of solid substratum, once submerged in seawater,
is quickly (in seconds) and inevitably covered with a layer of ad-
sorbed molecules that form a conditioning film prior to the at-
tachment of microbial cells (47, 342, 570). Proteins and glycopro-
teins are usually the major constituents of conditioning films (571,
572), although lipids, polysaccharides, nucleic acids, aromatic
amino acids, uronic acids, humic acids, and some other biomol-
ecules may also be present (573). The conditioning film affects the
surface nutritional conditions and physicochemical properties,
usually causing a convergence of surfaces that initially vary
strongly in hydrophobicity and roughness (6, 7, 572). The initial
surface-colonizing microbial communities thus may be similar
due to the masking effect of the conditioning film on the surface
chemistry of different substrata (17, 574). However, the net effect
of the conditioning film on microbial surface adhesion remains
controversial. Different surface components, such as proteins, nu-
cleic acids, and lipids, may facilitate the attachment of different
bacteria (575). Thus, the formation of the conditioning film may
either stimulate or inhibit adhesion by specific organisms (325).
Furthermore, surfaces with different substratum physicochemical
properties may select different primary surface-colonizing micro-
bial communities in spite of the masking effect of conditioning
film (20, 576). The composition of the primary colonizing micro-
bial community is likely to be determined by the relative contri-
butions of the masking effect of the conditioning film and the
native surface physicochemistry of the substratum. For example,

reactive or energetic surfaces may change or modify the chemical
properties of the common conditioning film and thus may select
for surface-colonizing microbial communities that differ from
those on inert surfaces (18, 396). It is reasonable to hypothesize
that the constituents of either the conditioning film or the surface
substratum that exert the strongest biological effect may be the
most influential factors controlling the composition and structure
of the primary surface-colonizing microbial community. In addi-
tion, seawater TEPs may rapidly adhere to a newly submerged
surface to form scattered organic film patches, participating in
surface conditioning (though only in small and localized areas)
and bringing preexisting TEP-colonizing microorganisms to the
growing surface-associated microbial community (577). This
adds another dimension of complexity to microorganism-surface
interactions and surface-associated microbial community com-
position and dynamics in marine environments.

Key Microbial Surface Components for Colonization

The initial microbial association with a surface in natural seawater
starts with the transport of the microorganism to the surface,
likely facilitated by diffusive or convective transport and active
swimming (6). Passive and active motion may play a critical role in
helping to overcome the diffusion barrier and the potential energy
barrier produced by electrostatic repulsive forces (6, 578). Micro-
organisms are able to sense and respond to surface environmental
signals and actively initiate surface adhesion by altering gene ex-
pression with consequent changes in cell surface chemistry, phys-
iology, and behavior (56, 359). Different microorganisms may
respond to distinct environmental signals, allowing each micro-
bial species to efficiently colonize its preferred surface (micro)en-
vironment and to avoid direct competition (360). Different mi-
croorganisms may also employ different surface adhesion
mechanisms, which are usually associated with different secretion
systems (343). Different cell surface components may have dis-
tinct functional roles in microbial surface colonization. In partic-
ular, some components may mediate specific interactions, and
others may mediate nonspecific interactions with surfaces. The
“secretome” of a microorganism thus defines its colonization po-
tential on various substrata (343). Microbial attachment to abiotic
surfaces is generally thought to be mediated by nonspecific pro-
cesses, while attachment to biotic surfaces is usually mediated by
specific processes (62). Cell surface components involved in spe-
cific substratum attachment may recognize distinct surface phys-
icochemical or biotic properties, which may also play a role in
regulating the expression and effectiveness of these surface-adher-
ing components (579).

Specific ligand-receptor interactions have been found to play an
important role in bacterial attachment to biological surfaces and
biofilm formation (48). For nonspecific interactions, certain mi-
crobial outer surface structures, such as flagella, fimbriae, pili, and
curli, as well as proteinaceous, polysaccharide, and eDNA compo-
nents (other than adhesion-specific ligands and receptors), collec-
tively known as adhesins, may be essential in the attachment pro-
cess, particularly during the transition from the initial reversible
interaction mediated by surface physicochemical properties to ir-
reversible adhesion (48, 343, 580–584). In addition to these seem-
ingly common mechanisms, some other and potentially unique
mechanisms may exist in marine bacteria to facilitate surface col-
onization and biofilm development. For example, in the marine
bacterium Pseudoalteromonas sp. strain D41, four outer mem-
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brane proteins, homologous to a TonB-dependent receptor
(TBDR), the OmpA and OmpW porins, and a type IV pilus bio-
genesis protein, respectively, were identified to be important for
the biofilm formation process on hydrophobic and hydrophilic
surfaces (585). So far, the involvement of the TBDR in biofilm
formation has been found only in marine bacteria (585).

The Holdfast, a Specialized Colonizing Apparatus in
Primary Surface Colonizers

Numerous marine bacteria, especially those in the MRC group
(8, 272), the iron-oxidizing Betaproteobacteria and Zetaproteo-
bacteria classes (586), the sulfur-oxidizing Beggiatoaceae and Leu-
cotrichaceae families (587, 588), morphotype IV of the Blastocau-
lis-Planctomyces group (14, 589), and budding and prosthecate/
stalked bacteria such as the Hyphomonadaceae and Caulo-
bacteraceae (590–592), produce a polar holdfast structure to facil-
itate surface colonization. Some other marine bacteria may also
produce a holdfast, as indicated by their ability to form rosette-
like aggregates, a characteristic associated with (though not shown
to date to be directly connected to) holdfast production (593–
595). The expression of the holdfast seems to be inducible, by
direct contact with a surface or other bacteria or by specific mi-
crobial physiological status or environmental conditions (591–
593, 596–598). In Caulobacter crescentus, a sequence of specific
steps is involved in surface colonization, with initial reversible
adhesion mediated by pili, followed by an arrest of flagellar rota-
tion and subsequent induction of a holdfast for irreversible adhe-
sion (599). C. crescentus produces its holdfast only at the appro-
priate time for surface attachment, and the flagellum serves as the
mechanosensor for the induction of holdfast expression and ad-
hesion (481, 600). Some other marine bacteria, such as Hyphomo-
nas sp. strain VP-6, may use a similar mechanism for surface col-
onization (591), and surface mechanosensing mechanisms
employing flagella were found in several other bacteria, including
marine vibrios (15, 481, 601, 602).

MRC bacteria have been identified as the key pioneer colonizers
on both abiotic and biotic surfaces in marine environments (8, 13,
20, 136, 173, 272, 450, 574, 603, 604). Recently, the iron-oxidizing
Zetaproteobacteria were identified as a group of pioneer colonizers
contributing to early-stage carbon steel biocorrosion in marine
environments (18, 81). Other putative holdfast-producing bacte-
ria are also frequently detected in marine surface-associated
environments. For example, Planctomycetales colonize marine
particles and algal or abiotic surfaces (12, 14, 605–607), and sul-
fur-oxidizing, iron-corroding Leucotrichaceae colonize algal and
submerged carbon steel surfaces (18, 608). Stalked or prosthecate
Caulobacter and Hyphomonas bacteria are primary colonizers of
algal or submerged surfaces (246, 266, 607). It is reasonable to
hypothesize that holdfast-mediated irreversible attachment may
be a key step in surface colonization by most of these pioneer
bacteria.

Flagellum-mediated motility and surface mechanosensing may
play critical roles in holdfast-mediated surface attachment by flag-
ellated bacteria (593). Ruegeria sp. strain TM1040 (previously Si-
licibacter sp. strain TM1040) mutants defective in wild-type swim-
ming motility, due to a loss of flagella or to increased cell length,
are also defective in attachment to dinoflagellates (609). Although
most holdfast-producing (or rosette-forming) bacteria possess a
polar monotrichous flagellum (590–592), not all of the holdfast-
producing bacteria have a polar flagellum or flagella. Some bacte-

ria use polar fimbriae for initial surface contact, followed by the
use of the holdfast for subsequent irreversible attachment, which
is likely induced by fimbria-surface interactions (596, 597). Genes
encoding the Aggregatibacter actinomycetemcomitans (previously
Actinobacillus actinomycetemcomitans) homologue Tad and Flp
fimbrial proteins are present in select MRC bacteria (610), likely
playing a role in surface colonization (595). Some other bacteria
may induce holdfast expression and attachment in response to
direct cell surface-substratum contact. It is likely that the flagel-
lum is the major, but not the sole, mechanism of surface mecha-
nosensing and holdfast induction for surface colonization in ma-
rine microorganisms.

COOPERATION AND COMPETITION IN SHAPING THE
COMPOSITION, DYNAMICS, AND FUNCTION OF
MULTISPECIES MICROBIAL BIOFILMS

Marine surface-associated communities are composed of diverse
microbial species (17, 108, 151, 153, 574, 611, 612), which usually
form biofilms with specific structures and functions (13). Biofilms
are composed mainly of a highly hydrated EPS matrix that encases
both surface-associated microorganisms and their extracellular
products (29, 613). In addition to structural components such as
extracellular polysaccharides, proteins, nucleic acids, lipids, and
other biopolymers, such as humic substances, which collectively
determine key biofilm microenvironmental physicochemical
properties, including matrix density, porosity, water content, hy-
drophilicity, charge, sorption capacity, mechanical stability, fluid
dynamics, and mass transport (29, 59, 584), the biofilm matrix
also contains microbial functional components such as extracel-
lular enzymes, intraspecies and interspecies signaling molecules,
toxins, and extracellular membrane vesicles (EMVs) that facilitate
microbial interactions (29, 53, 61, 62). Besides playing important
structural and functional roles in mature biofilms, microbial in-
teractions also occur during early surface colonization and biofilm
development stages, contributing to the diversity and succession
of surface-associated microbial communities (62, 567).

Coaggregation, a Common Mechanism for Microorganism
Recruitment to Surfaces

Besides initial surface attachment, microorganisms can also be
recruited to the surface-associated community by secondary mi-
croorganism-microorganism and microorganism-surface matrix
interactions (397). Coaggregation has been proposed as a central
mechanism, likely mediated by specific cell surface adhesin-recep-
tor interactions between participating microorganisms (614), for
the formation and development of multispecies biofilm commu-
nities (567, 615, 616). Some surface-colonizing microorganisms
performing this bridging function recruit different microorgan-
isms to join in the development of the surface microbiota (616).

It has long been recognized that coaggregation may be a key
driver shaping biofilm community composition and function in
diverse environments (616). Primary surface-colonizing bacteria
commonly employ coaggregation as a mechanism to recruit sec-
ondary surface colonizers to establish sequential successional dy-
namics and the ordered spatial structure of the biofilm commu-
nity. This has been most thoroughly studied in freshwater and
wastewater systems and in human oral biofilms to date, although
the implications for marine biofilms are clear. Freshwater and
wastewater bacteria coaggregate (567, 617–619), and some fresh-
water bacteria that can serve as bridging mediators for recruiting
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different microorganisms to the surface-colonizing microbial
community have also been identified (567, 620–622). Coaggrega-
tion of both early and later surface colonizers with the bridging
microorganisms contributes to the dynamic changes of species
composition and diversity observed in surface-associated micro-
bial communities (567, 616, 623). Chemotaxis is normally re-
quired for effective microbial coaggregation (624), and freshwater
bacterial coaggregation is strongly influenced by the metabolic
status of the microorganisms involved and environmental condi-
tions such as nutrient availability, pH, and ionic strength of the
aquatic system (625, 626). Environment-regulated and/or cell
physiology-controlled expression of the microbial coaggregation
adhesins or receptors may be the reason for the observed phenom-
ena (61). Interspecies coaggregation mediated by the specificity of
adhesin-receptor interactions may be driven by the evolution of
the microbial partners (627), which may also lead to the establish-
ment of broader cooperative traits (628, 629). For example, am-
monia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria
(NOB) form symbiotic partnerships via coaggregation to carry
out nitrification in activated sludge flocs and biofilms (619, 630,
631). This cooperation is essentially facilitated by the spatial jux-
taposition of these two groups of bacteria and by the effective
transfer of nitrite from AOB as a product of energy metabolism to
NOB as a substrate for energy metabolism. In similar ways, coag-
gregation likely facilitates other metabolic cooperation processes
via the transfer of other metabolites or energy in surface-associ-
ated microbial communities (632–634).

Coaggregation draws different microorganisms into close spa-
tial juxtaposition within multispecies biofilms, which not only
may increase the diversity of species composition and metabolic
pathways of the community but also may enhance the opportu-
nity for and efficiency of cell-cell signaling, metabolite transfer/
exchange, cross-species protection, genetic exchange, and con-
tact-dependent gene expression (61, 567, 628). Although
investigations of coaggregation partnerships and their conse-
quences have scarcely been undertaken with marine bacteria (635,
636), it is reasonable to hypothesize that coaggregation-based cell-
cell interactions may play as important a role in marine biofilm
formation as in freshwater environments (616, 628). According to
McCormick et al. (628), microbial coaggregation associated with
marine particles may help to establish a parsimonious food chain,
increasing the energetic potential of metabolites of these resource
islands in generally oligotrophic surroundings.

Cheating: It Happens in the Microbial World, Too

Surface-colonizing microorganisms also possess diverse mecha-
nisms of competition. Competition sensing is a recently proposed
bacterial strategy for the direct detection of and response to, via
stress responses such as those caused by nutrient limitation, eco-
logical competition, which is particularly intense in surface- and
biofilm-associated communities (637). Some primary surface col-
onizers may inhibit colonization by other and/or later-arriving
taxa (638), and this competition may be quite subtle. P. aeruginosa
in multispecies microbial biofilms increases the production of or-
ganic iron chelators, siderophores, in response to increasing Fe
scarcity, thus enjoying a competitive advantage over other micro-
organisms (639–641). Although this strategy may increase the
ability of P. aeruginosa to sequester iron and thus outperform
other microorganisms, it also produces the opportunity for sid-
erophore nonproducers to benefit. Siderophore nonproducers,

“cheaters,” may be able to harvest more iron via P. aeruginosa-
produced siderophores without paying any cost of siderophore
production (639). Such cheating microorganisms may actively
colonize or be recruited as secondary colonizers of submerged
surfaces.

Iron is an essential trace element, existing mainly as solid, very-
low-solubility, Fe3�-bearing mineral phases in oxic and pH-neu-
tral environments (433, 642). Due to its very low concentration
(643), dissolved iron constitutes a limiting micronutrient for pri-
mary productivity in large areas of the world’s oceans, particularly
in high-nutrient (nitrate, phosphate, and silicate) but relatively
low-phytoplankton-biomass areas (644, 645). Furthermore, ma-
rine bacteria contain more iron per unit biomass than phyto-
plankton, and thus, bacterial iron assimilation may constitute an-
other constraint on iron availability to phytoplankton (646). Iron
is also a key resource limiting microbial N2 fixation, phosphate
acquisition, and, thus, productivity in the ocean (181, 647–649). It
has been proposed that iron may control productivity in half of
the world’s oceans (650, 651) and may have accounted for one-
quarter of the decrease in the atmospheric CO2 concentration
during the Earth’s historical glacial maxima (652). Besides being a
limiting resource for photosynthesis and N2 fixation, iron is also
an essential functional component of key enzymes in respiration,
DNA replication, fatty acid metabolism, and other vital cellular
and physiological processes (653). In the global ocean, the iron
cycle affects, directly and indirectly, the biogeochemical cycling of
C, N, P, Si, and S and thus exerts a strong influence on the regu-
lation of the Earth’s climate (654). Although the bulk concentra-
tion of particulate iron (�0.4 nM) is similar to the bulk concen-
tration of free dissolved iron (0.03 to 1.0 nM) in the surface ocean
(642), marine particle-associated iron is highly localized and con-
centrated. Thus, marine particles may provide a rich source of
iron for particle-associated microbial processes (53, 177, 181, 227,
301, 642, 655). This feature is exploited by many marine microor-
ganisms, especially in environments with strong iron limitation,
for CO2 fixation, N2 fixation, and other key biogeochemical pro-
cesses (155, 656). Under iron stress conditions, many marine par-
ticle- and surface-associated microorganisms produce and secrete
siderophores to facilitate iron dissolution and uptake (657, 658),
and this physiological process is usually coregulated with the mi-
crobial surface- and biofilm-associated physiology and modulated
by the TCS, QS, sRNA, and c-di-GMP regulatory systems (179,
659–663). Interestingly, some surface- or biofilm-associated bac-
teria possess the genes for siderophore-specific transport systems
such as the TonB-dependent outer membrane transporters or
ABC-type siderophore transport systems (664, 665) while lacking
the genes for siderophore production (666, 667). These sidero-
phore-nonproducing cheaters may gain the benefit of taking up
siderophore-bound iron if they can recruit as surface colonizers
localized near siderophore-producing microorganisms (35, 668).
Cheating as a special form of competition may be important in
surface- and biofilm-associated marine microbial communities.

Quorum sensing provides a fundamental means of microbial
cooperation (39, 441). In natural environments, this cooperative
behavior benefits the biofilm population and community, for ex-
ample, by synchronizing the production and secretion of extracel-
lular enzymes for efficient degradation and utilization of biopoly-
meric substrates (669, 670). However, QS-based cooperation may
suffer from and even be compromised by cheating. For example,
in natural environments, 50% of V. cholerae strains may be QS
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deficient, and interestingly, some of these strains may actively
cheat by false signaling to lure the QS-capable strains to produce
QS-dependent “public goods” (670). These cheating bacteria be-
have very much like “swindlers,” whereas the above-mentioned
siderophore-nonproducing bacteria behave very much like
“thieves.” However, both strategies of cheating seem to be effec-
tive for competition in surface-associated microbial communities.

Although cheating may lead to a disruption or breakdown of
cooperation (671), cheaters are very common in the microbial
world, especially within high-density populations or communities
such as those on surfaces and in biofilms (672). Lee et al. (673)
proposed that the existence of cheaters in a cooperative microbial
community may provide a general mechanism for the evolution of
diversity that is involved in providing public goods, such as sid-
erophores for iron scavenging, extracellular enzymes for metabo-
lizable substrate acquisition, quorum sensing autoinducers for
population or community adaptivity, extracellular matrix biopo-
lymers for biofilm formation and structure, surfactants for motil-
ity on surfaces, and exotoxins for host invasion (668, 671, 672,
674–676). The functionality and sustainability of a biofilm micro-
bial community may depend upon the balance between coopera-
tive and competitive interactions (677), likely driven by the coevo-
lution of cooperators and cheaters and maintained by the
compositional and metabolic diversity in the microbial system
(678).

Deadly Competition: Chemical Agents, Predation, and
Specialized Weapons

There are various competition strategies that are more directly
antagonistic than cheating among microorganisms (62, 679), es-
pecially on surfaces or in biofilms, where high microbial densities
and close spatial proximities are achieved. More than 50% of ma-
rine bacterial isolates were found to be antagonistic toward other
bacteria, and this trait was more common in particle-associated
bacteria than in free-living bacteria (680, 681). For example, many
MRC bacteria produce antimicrobial substances such as tropo-
dithietic acid (TDA), indigoidine, tryptanthrin, and peptide anti-
biotics (8, 173, 272, 450, 594, 682). TDA biosynthesis is modulated
by the QS and c-di-GMP regulatory systems in MRC bacteria, and
TDA also induces its own synthesis as well as bacterial surface
attachment, indicating its roles in the bacterial motile-to-sessile
lifestyle switch and interspecies competition (483, 683, 684). In-
digoidine synthesis is also regulated by QS and provides a com-
petitive advantage that contributes to the surface colonization
success of its producers (450, 685). Surface-associated MRC bac-
teria are over 10 times as likely as their free-living counterparts to
produce antibiotics in marine environments (680), and this dif-
ference may be related to the differences in bacterial gene reper-
toires (8, 173, 594). Antibiotic production may play a role in the
success and prevalence of MRC bacteria as pioneer surface colo-
nizers in the ocean (8, 17, 173, 272, 450).

Some other marine bacteria, such as Bdellovibrio and like organ-
isms (BALOs), which are affiliated with the Bacteriovoracaceae and
Bdellovibrionaceae in the Deltaproteobacteria lineage and Mica-
vibrio in the Alphaproteobacteria lineage, are obligate predators
that prey on other environmental microorganisms (686). BALOs
have evolved host interaction predatory-specific genomic islands
(687). As surface-associated microbiota have much higher densi-
ties than free-living communities, BALOs are more abundant on
surfaces, exploiting a rich resource of prey microorganisms in

marine environments (688, 689). Living in biofilms also provides
protection against extreme or hostile environmental conditions
for BALOs, enhancing their survival in nature (690). BALOs may
employ chemotaxis to respond to chemoattractants and to track
prey bacteria (691) and employ gliding motility to “scout” for prey
on surfaces (692). Bdellovibrio bacteriovorus predation requires
the type IV pili (693), which may play an important role in initial
attachment to a prey bacterium in aquatic environments and pos-
sibly in movement for locating prey bacteria within the matrix of
biofilms (694). BALOs are phylogenetically and environmentally
diverse in the ocean (695–697), and they display niche separation,
different predation strategies, and prey selectivity such that some
BALOs are more specific for particular prey organisms, while oth-
ers are more prey generic (696, 698–700). Some other bacteria of
the Proteobacteria (including Alpha-, Beta-, Gamma-, and Delta-
proteobacteria), Actinobacteria, Bacteroidetes, and Chloroflexi lin-
eages are also predatory (701). Marine predatory bacteria may
play a role in shaping the composition, abundance, and biogeo-
chemical functions of the affected surface-associated microbiota
(62, 699, 702). However, this hypothesis has not yet been system-
atically tested.

Some surface-associated bacteria use contact-dependent growth
inhibition (CDI) systems that constitute cognate toxin-immunity
protein pairs for interbacterial competition (703, 704). The CDI
systems are mainly type V secretion systems, and the secreted tox-
ins display RNase, DNase, or membrane pore-forming activities
toward target cells of the same species, suggesting the involvement
of these systems in competition between closely related bacterial
strains (703, 705, 706). Thus, CDI systems may enforce coopera-
tion among surface-associated bacteria by inhibiting the growth of
cheaters that lack cognate immunity proteins (703). Genomes of
many Alpha-, Beta-, and Gammaproteobacteria, including marine
species, harbor the genes that encode CDI systems (707–709),
which may be prevalent in marine surface-associated microbial
communities.

Recently, it was found that more than a quarter of Gram-nega-
tive bacteria harbor a type VI secretion system (T6SS), which is
involved in bacterial predation on neighboring bacterial cells via a
contact-dependent mechanism as well (705, 710). Furthermore,
some bacteria have evolved a “tit-for-tat” counterattack strategy,
also using the T6SS mechanism (711, 712). Surface association
may be favorable to T6SS effector delivery (713), in which the
threonine phosphorylation signal transduction pathway (TPP)
may play an important role in surface-dependent T6SS activation
(714). Nearly one-third of the identified T6SS gene clusters harbor
TPP-related components; thus, surface activation of the T6SS by
signal transduction may be very common in bacteria (715).

It has been found that the expression and secretion of the anti-
microbial T6SS, such as T6SS1 in V. parahaemolyticus, are upregu-
lated upon surface sensing (716). The effect of T6SS-mediated
intraspecific and interspecific competition may be maximized
particularly in high-density populations or multispecies commu-
nities such as microbial biofilms and aggregates (717–719). Bac-
terial T6SS mutants have severe impacts on biofilm formation
(718, 720). In V. cholerae, the T6SS is required for host intestinal
colonization (350, 721). The expression of T6SSs is usually in-
duced by specific environmental signals such as temperature, sa-
linity, cell density, and surface sensing and regulated by mainly the
TCSs and by the QS, sRNA, c-di-GMP, cAMP-CRP, and alterna-
tive sigma factor systems (350, 713, 716, 722–727), all of which are
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involved in the modulation of microbial surface colonization and
in the regulation of gene expression in biofilms (414, 728). The
coordination of the TCS or the QS, sRNA, or c-di-GMP regulatory
system with the expression of T6SSs may potentially aid in micro-
bial surface colonization fitness via the displacement of competing
bacteria at locations having growth-supportive conditions and via
the promotion of horizontal gene transfer (718, 729). For exam-
ple, in V. cholerae, the expression of the T6SS is regulated by quo-
rum-regulatory Qrr sRNAs, which repress the T6SS genes at low
cell density (727). This process may help V. cholerae to conserve
resources and gain benefit in a multisubpopulation or multispe-
cies biofilm, as assembly of the T6SS requires the synthesis and
secretion of a cluster of protein components and would not be
advantageous when there are few targets available (713, 730, 731).
Although there is no direct evidence showing a QS regulatory
effect on bacterial T6SS functioning in natural marine environ-
ments, QS signal compounds have been identified in marine sur-
face-associated microbial communities (440, 441), indicating that
it is possible that both mechanisms may be functional and coor-
dinated in bacterial ecophysiology in marine surface-associated
microbiota.

Alphaproteobacteria (especially MRC bacteria) have been dem-
onstrated to be the key primary surface colonizers in marine en-
vironments (8, 13, 20, 173, 272, 450, 604). However, the T6SSs are
found primarily in Gammaproteobacteria among the marine bac-
teria (732). Recently, T6SSs have also been identified in some bac-
terial strains, genomes, and marine metagenomes of Bacteroidetes
(733–736), an important group of secondary surface colonizers in
marine environments (13, 17, 108, 130, 272, 574). Therefore, it is
reasonable to hypothesize that T6SS-mediated microbial com-
petition may contribute to the successional change and spatial
variation of the composition and structure of surface-associ-
ated marine microbial communities, in which certain T6SS-
harboring bacteria may constitute important groups of sec-
ondary colonizers.

Extracellular Membrane Vesicles as Mechanisms for Both
Cooperation and Competition

Cooperation and competition as important ecological charac-
teristics are not just for surface-associated microorganisms.
Free-living marine microorganisms, including the ocean eco-
system-dominant cyanobacterial genera Prochlorococcus and
Synechococcus, many heterotrophic bacteria, and seawater micro-
bial communities in both coastal and oligotrophic open-ocean
environments, have recently been found to produce and secrete
EMVs that contain proteins, lipids, DNA, and RNA (737). The
proposed benefits of this ecological phenomenon include (i) en-
hancing microbial nutrient sensing and uptake via EMV-con-
tained transport receptors, substrate-binding proteins, and degra-
dative enzymes that target environmental HMW molecules; (ii)
stimulating neighboring helper microorganisms to grow, pro-
duce, and share beneficial products such as enzymes, vitamins,
siderophores, and other materials that the EMV-secreting micro-
organism cannot produce; (iii) facilitating microbial communica-
tion and horizontal gene transfer via mediating cell-to-cell ex-
change of signal molecules and DNA at the ecosystem level; and
(iv) preventing phage attack by using the secreted EMVs as decoys
(737–741). For example, the EMVs of the psychrotolerant bacte-
rium Pseudoalteromonas antarctica NF3 contain proteases, pepti-
dases, glycosyl hydrolases, lytic transglycosylases, glycosyltrans-

ferases, TBDRs, and sulfate-binding proteins (738). The EMVs of
another Antarctic bacterium, Shewanella livingstonensis NF22,
also contain TonB-dependent siderophore receptors, phosphate-
binding periplasmic protein precursors, and proteins involved in
aromatic hydrocarbon degradation (739). Most of these proteins
are likely involved in organic matter degradation and nutrient
uptake, potentially important to bacterial survival in the nutrient-
limited Antarctic environment. EMVs can also be employed to
attack competing microorganisms (19, 29, 741, 742). For example,
the EMVs of P. antarctica NF3 also contain enzymes that hydro-
lyze bacterial cell wall polymers (738). However, the benefits pro-
vided by EMVs may come at a very high cost for free-living mi-
croorganisms, especially for those living in oligotrophic marine
environments (740). It has been estimated that �104 to 105 tons of
fixed carbon are released into the ocean daily via EMVs by Pro-
chlorococcus alone (737), without taking into account other EMV-
secreting microorganisms and other limiting resources such as N,
P, and Fe contained in the EMVs. In addition, the benefits are not
very reliable for free-living microorganisms because there is little
or no control of the fates and effects of the EMVs once they are
released into the surrounding aquatic environment. Physical,
chemical, and biotic (from nontarget organisms) factors may all
exert impacts on the fates and effects of the secreted EMVs in
marine waters.

EMV secretion is common in all three domains of life (743), and
EMVs are an important component of the biofilm matrix (15, 19,
29). The secretion of EMVs is regarded as a bacterial stress re-
sponse and may be regulated by environmental cues (744, 745).
EMVs are beneficial for planktonic microbial cells in forming ag-
gregates and contributing to adherence to surfaces and thus facil-
itate microbial surface colonization and early-stage biofilm devel-
opment (744, 746, 747). For example, the EMVs of P. antarctica
NF3 contain several types of adhesins (738). Adhesins in EMVs
may promote microbial coaggregation and assist in the recruit-
ment of secondary surface colonizers (748, 749). EMVs may also
contain signaling molecules that facilitate intraspecific and inter-
specific communication and cooperation at the microbial popu-
lation and community levels (741, 742). V. cholerae EMVs contain
the major biofilm matrix proteins RbmA, Bap1, and RbmC (750)
as well as chitinases (750), indicating once again that chitin is an
important resource for vibrios in marine environments and high-
lighting the importance of surface colonization for chitin utiliza-
tion. In V. fischeri, biofilm formation is correlated with EMV pro-
duction, which is induced by the sensor kinase RscS (751). How is
the production of EMVs regulated in other marine bacteria? Is
there any environmental cue or physiological control for the pro-
duction of EMVs? The answers to these questions will advance our
understanding of the processes and mechanisms of microbial
EMV production and their contributions to biofilm formation
and development.

In biofilms, the EMVs and their contents are confined, at least
partially, to the EPS matrix, and they should be both more chem-
ically stable and physically closer to the target microbes (either as
cooperators or competitors of the EMV-secreting microorgan-
ism). The cost of producing and secreting EMVs in biofilms may
be better justified than in planktonic environments. Therefore, a
free-living cyanobacterium living in the open ocean may have a
harsher life than a cyanobacterium living in a microbial mat (752,
753). Living in a crowded “city,” called biofilm, may be a preferred
lifestyle for most aquatic microorganisms if conditions permit
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(22). Furthermore, no matter which mode of life is undertaken,
either free-living or surface associated, the microorganisms in na-
ture need to benefit their cooperators, oppose their competitors,
and maintain a benign or at least neutral interaction with other
not-so-friendly and not-so-hostile neighbors. All of these activi-
ties require the expenditure of metabolic energy and precious re-
sources, which may not be easy to obtain in many marine envi-
ronments. Due to the close positioning of microorganisms, the
protective nature of the EPS matrix, and the development of sens-
ing, signaling, and regulatory mechanisms and social behaviors
among different microorganisms in biofilms (21, 35), the func-
tional efficiency of biofilm microbial communities should be
higher and more stable than those of planktonic microbial com-
munities. In future research, investigations of the ecological func-
tions of the surface-associated and biofilm microbiota that take
into account the molecular mechanisms, community processes,
material and genetic fluxes, ecosystem metabolism efficiency, and
other systems biology perspectives may be highly productive.

KEY MICROBIAL SURFACE COLONIZERS IN MARINE
ENVIRONMENTS

As is highlighted throughout this review, there are two major life-
styles in marine microorganisms, free-living and surface associ-
ated. Most marine microorganisms appear to prefer one lifestyle
or the other, although some may switch their preference under
certain environmental conditions or during certain life stages. For
example, some marine bacteria, such as those affiliated with the
SAR11 and SAR86 lineages, are mainly free-living (754, 755),
while the marine Rhodobacteraceae group of the Alphaproteobac-
teria (i.e., the MRC), the Alteromonadaceae and Vibrionaceae
groups of the Gammaproteobacteria, and Bacteroidetes (mainly the
Flavobacteria group) are frequently surface associated (13, 272).
The separation of the free-living and surface-associated lifestyles is
likely a result of long-term evolution, and these distinct capabili-
ties are deeply rooted in microbial genetics (756–758). The
ecophysiology of surface-associated marine Alteromonas and
Vibrio is discussed above, so the foci of this section are the MRC
and Bacteroidetes.

The Marine Roseobacter Clade

MRC bacteria are ubiquitous in the world’s oceans and abundant
as both free-living and sessile organisms. When sessile, they are
usually associated with the phycospheres of diatoms, dinoflagel-
lates, and other algae and with zooplankton fecal pellets, marine
particles, and submerged surfaces (8, 13, 173, 272, 450, 594, 756,
759–761). These bacteria are generally heterotrophs, able to me-
tabolize a variety of labile and recalcitrant organic substrates, in-
cluding monocyclic and polycyclic aromatic hydrocarbons as well
as various algal osmolytes and other metabolites (173, 175, 272,
594, 762–767). They usually react to and grow quickly after small
increases in levels of labile organic substrates, such as amino acids,
simple sugars, and DMSP, especially during the initial phase of
algal blooms (8, 13, 252, 265, 272, 768–772).

Some of the MRC bacteria produce auxins (such as indoleacetic
acid), essential vitamins, and siderophores, entering into mutual-
istic relationships with algae (272, 595, 603, 610, 758, 762, 765,
773, 774). All MRC bacterial genomes harbor the genes that en-
code c-di-GMP signaling systems, and more than half of the MRC
genomes harbor the genes that encode motility, chemotaxis, and
diverse chemoreceptor proteins (8, 595, 609, 682, 762, 775), likely

important in locating algae and establishing tight interactions and
associations (8, 595, 776). Many MRC bacteria have holdfasts,
type I and type IV secretion systems, QS regulatory systems, and
versatile physiological capabilities for living in suboxic and anoxic
(micro)environments (employing denitrification, for example),
which are important for living on surfaces and in biofilms (8, 173,
272, 450, 603, 758, 762, 777).

In addition to the physiological and genetic traits that are di-
rectly related to surface living, many MRC bacteria have other
properties that are advantageous to living on surfaces or in bio-
films. Some MRC bacteria conduct aerobic anoxygenic photosyn-
thesis. This process seems to be enhanced by surface association
(150, 151, 173, 762, 778–780) and may enhance ATP production,
active transport, motility, and cell growth yield on available or-
ganic matter (272, 779). Some MRC bacteria synthesize and store
poly-�-hydroxyalkanoates when carbon and energy resources are
available but inorganic nutrients are limiting (781, 782), which
may enhance bacterial viability via poly-�-hydroxyalkanoate ca-
tabolism when other sources of organic substrates are scarce
(594). Some MRC bacteria also carry out lithotrophic sulfur oxi-
dation to conserve additional energy (783, 784), which may be
explored to enhance anaplerotic CO2 fixation, growth, and sur-
vival (761, 785). These traits provide MRC bacteria with addi-
tional competitive advantages for energy acquisition, energy
conservation, and stabilization of bacterium-alga and bacterium-
surface associations.

Many MRC bacteria can produce antibiotics that may enhance
their competitiveness against other surface-colonizing bacteria,
especially in the phycosphere, where antibiotic production is
probably not limited by the availability of energy and organic sub-
strates (8, 272, 450). Furthermore, plasmids, chromids, and other
extrachromosomal mobile genetic elements, such as the phage-
like gene transfer agents (GTAs), are common in MRC bacteria,
contributing to gene transfer, metabolic versatility, and fitness,
especially in microhabitats such as those on surfaces and in bio-
films (762, 786–789). In some MRC bacteria, the genes encoding
the biosynthesis of TDA, siderophores, and extracellular polysac-
charides are located on plasmids or chromids, indicating the di-
rect involvement of extrachromosomal genetic material in bacte-
rial surface associations (603, 789). For example, Marinovum
algicola DG898 harbors three plasmids and eight chromids, and
one of the chromids harbors the 52-kb biofilm functional gene
cluster that is essential for surface attachment and adaptation to
the phycosphere (790). MRC bacteria are well adapted to surface
living, and this trait has been suggested to originate from the co-
evolution of MRC bacteria with marine algae (757). Furthermore,
MRC bacteria may promote surface colonization and biofilm for-
mation of other marine bacteria (453), likely playing a role in
shaping the composition and succession of surface-associated mi-
crobial communities (17). All the available evidence indicates that
MRC bacteria are important primary surface colonizers in marine
environments.

Marine Bacteroidetes

Diverse genomic and ecophysiological evidence indicates that ma-
rine Bacteroidetes are highly adapted to surface living and POM
unitization. Studies have shown that Bacteroidetes bacteria are
common in marine environments (791), abundant in organic par-
ticle-rich coastal waters (108, 113, 130, 611, 791), responsive to
algal and jellyfish blooms (272, 537, 756, 791–793), copiotrophic
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(252), and prone to leading a surface-associated life (12, 17, 246,
272, 574, 607) supported by the extracellular degradation of com-
plex biopolymers such as polysaccharides and proteins (194, 791,
794–797). These bacteria harbor a large number of genes for ad-
hesive exopolysaccharides, adhesion proteins, proteases, pepti-
dases, glycoside hydrolases, and lipases, and several genes for
biopolymer degradation are coregulated with the genes for TonB-
dependent transport systems (794, 795, 798–802). These proper-
ties indicate that the marine Bacteroidetes are specialists in surface
colonization and play a key role in the degradation and utilization
of HMW DOM and POM (272, 791). A recent metagenomic study
showed that submerged insoluble polysaccharides such as cellu-
lose are colonized by biofilm-forming marine bacterial commu-
nities, of which the Bacteroidetes are a major group that harbors an
extensive repertoire of genes encoding glycoside hydrolases (803).
Marine Bacteroidetes may also harbor TonB-dependent transport
systems that can be used for the uptake of polysaccharides (804).

Marine Bacteroidetes commonly possess gliding motility, which
is important for surface living, chitin utilization, and other
ecophysiological activities (805), but these bacteria generally do
not produce flagella. So how do they locate and colonize surfaces
such as marine particles? Azam and Malfatti (186) proposed that
nonswimming particle colonizers, such as Bacteroidetes, first at-
tach to the highly abundant small gel particles in seawater. Aggre-
gation of small gel particles with larger particles and agglomera-
tion with other materials, such as phytoplankton or detritus, bring
attached bacteria to the large marine particles and aggregates such
as marine snow (186). Recently, Bar-Zeev et al. (577) verified that
microgel TEPs indeed facilitated biofilm formation in test aquatic
systems. The Bacteroidetes were also the dominant group of bac-
teria attached to TEPs in mesocosm experimental systems, espe-
cially under intermediate- and high-turbulence conditions (806).

Some other mechanisms may also contribute to the success of
surface living by Bacteroidetes. Certain marine Bacteroidetes har-
bor rhodopsin pigments for light energy harvesting (807–809),
with proteorhodopsins functioning as light-driven H� pumps
(810, 811), KR2-type rhodopsins functioning as light-driven Na�

pumps (812), and NM-R3-type rhodopsins functioning as light-
driven Cl� pumps (813). In all three cases, membrane polarity can
be produced and used to drive active transport. Proteorhodopsins
are likely the most prevalent rhodopsins in Bacteroidetes and other
marine bacteria, and genes encoding their synthesis are extremely
abundant and highly expressed. These pigments likely play an im-
portant role in energy metabolism in the surface oceans, especially
under oligotrophic or other stressful conditions (779, 814–817).
Proteorhodopsin-mediated energy conservation of Bacteroidetes
may promote growth and survival, facilitate the degradation of
complex or recalcitrant biopolymers, and enhance the uptake of
organic substrates at low concentrations (818). The phototrophic
potential of proteorhodopsin-containing Bacteroidetes was found
to be correlated with the quality and dynamics of environmental
DOM (819). Furthermore, proteorhodopsin-mediated light en-
ergy harvesting significantly enhances Bacteroidetes anaplerotic
CO2 fixation when suitable organic substrates are available (819).
Bacteroidetes may also possess sensory-like rhodopsins, which
function in phototaxis to direct a bacterium toward desirable light
conditions (820, 821). For example, the genome of Polaribacter sp.
strain MED152 harbors a suite of genes for light sensing and re-
sponses (822). It has been suggested that the proteorhodopsins
and the light-sensing proteins may play a role in the dispersion of

Bacteroidetes from particles (822, 823). This mechanism likely in-
volves inducing the secretion of EPS-degrading enzymes that dis-
rupt biofilm and release bacteria from the biofilm matrix, prevent-
ing particle-associated bacteria from sinking with the colonized
particles into the dark deep water, which usually lacks metaboliz-
able organic substrates. This mechanism may help Bacteroidetes
maintain themselves in the relatively productive and labile parti-
cle-rich sunlit surface water, contributing to the success of Bacte-
roidetes on surfaces.

Gliding is a unique movement used by bacteria to explore sur-
faces (824). The gliding capability of many marine Bacteroidetes
undoubtedly contributes to the success and fitness of this group of
bacteria for life on surfaces (272). Some marine Bacteroidetes are
gliding predators that can prey on other surface-associated bacte-
ria (825) as well as diatoms and cyanobacteria (826). The gliding
motility of Bacteroidetes is powered by proton motive force (824),
and proteorhodopsin-harboring predatory Bacteroidetes may gain
an extra advantage in surface life via light energy-powered gliding
motility and microbial predation, although this is speculative.
Predatory Bacteroidetes may contribute to the control over sur-
face-associated microbial composition and abundance, algal asso-
ciations and interactions, and marine carbon and nutrient cycling
in photic seawater. However, it is still not clear if predatory capa-
bility is common among marine Bacteroidetes. Further investiga-
tions are necessary to better understand the diverse ecophysiologi-
cal processes and biogeochemical roles of this group of bacteria in
particles and in biofilms in the ocean.

Marine Roseobacter Clade Bacteria and Bacteroidetes in
Surface-Associated Community Dynamics

Although both MRC bacteria and Bacteroidetes lead a motile-ses-
sile (or floating-sessile) biphasic lifestyle and are frequently found
to colonize algal surfaces (595), they may respond to algal blooms
differently. At the start of an algal bloom, when the algal popula-
tion is small and growing, the algae are healthy and active in syn-
thesizing labile DOM such as simple sugars, sugar alcohols, or-
ganic acids, amino acids, and DMSP, some of which may be
released into the environment as algal exudates (209, 272, 758,
827). In this phase, algal cells provide localized and concentrated
labile organic substrate sources, so surface colonization is advan-
tageous to certain marine microorganisms, such as many MRC
bacteria (758), and allows rapid responses to the labile DOM sub-
strates. The capability for quick responses to algal exudates makes
the MRC bacteria a major group of pioneer surface colonizers
(136, 272). With bloom development and the buildup of environ-
mental stresses such as increasing scarcity of inorganic nutrients
and accumulation of waste products, the physiological status of
the blooming algae changes (828). Usually, unhealthy and senes-
cent algal cells produce and secrete more protective or stress-re-
lated extracellular substances, such as polysaccharides (227, 272,
828–830). For example, the secretion of extracellular polysaccha-
rides and the production of TEPs by most marine algae increase
significantly under nutrient-limiting conditions that are com-
monly experienced during the declining bloom phase (831–833).
In the demise phase of an algal bloom, dying and broken algal cells
release polymeric cellular contents, and some algae may enter the
autocatalytic programmed cell death phase of the growth cycle
and release huge amounts of TEPs into seawater (834). Further-
more, cellular organic matter can also be released from algal cells
by cell lysis due to viral infections, grazing, and sloppy feeding,
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especially during blooms, when very high algal population densi-
ties are reached (272, 835, 836). The organic algal exudates, se-
creted TEPs, and lysed cellular contents may facilitate the forma-
tion of marine snow and sometimes the massive formation of
mucilages in seawater (830, 837, 838). In these late and decay-
ing bloom phases, marine Bacteroidetes may gain dominance in
the microbial communities and become the predominant surface
colonizers on senescent algae, algal aggregates, and detrital parti-
cles (109, 272, 839, 840), attacking and utilizing various kinds of
biopolymers (841). Various studies, including recent genomic
and environmental genomic investigations, have suggested that
certain Bacteroidetes bacteria may prefer to utilize complex,
biopolymeric substrates over simple, monomeric organic com-
pounds as primary carbon and energy sources (272, 791, 822),
indicating their major roles in cycling algal polymeric DOM
and POM.

MRC bacteria and Bacteroidetes likely employ distinct physio-
logical and metabolic strategies during algal blooms (272). Thus,
it is reasonable to hypothesize that MRC bacteria and Bacteroidetes
may adopt different strategies for exploiting resources from algal
blooms, via substrate segregation (utilizing simple labile DOM
versus complex HMW DOM and POM) and temporal separation
(colonizing at early bloom phases versus at late bloom phases).
Indeed, studies have shown that MRC bacteria are key pioneer
surface colonizers and that Bacteroidetes are likely secondary sur-
face colonizers of submerged surfaces in coastal seawater (17,
604). Marine Bacteroidetes may be specialized as secondary sur-
face-colonizing experts, armed with T6SSs, EMVs, extracellular
N-acyl homoserine lactonases (for disrupting QS-facilitated pri-
mary surface colonizer communities), and gliding predation ca-
pability for preying on and replacing some of the primary coloniz-
ers on the surface (733, 735–737, 825, 842, 843). However, both
the MRC and Bacteroidetes groups are highly diverse (272, 594).
Different species or strains in each group may have somewhat
different ecophysiologies (such as distinct substrate spectra and
different responses during bloom progression), and certain bac-
teria from different groups may have similar ecophysiologies and
overlapping niche preferences (8, 272, 768, 844–846). Differenti-
ation of the roles of the MRC bacteria and Bacteroidetes in algal
bloom-related processes and ecofunctions may not be straightfor-
ward in some situations. Furthermore, although the species and
physiological status of algae are important factors influencing the
composition, succession, and function of alga-colonizing micro-
bial communities (847), the composition, abundance, and dy-
namics of metabolizable organic compounds (such as labile DOM
and HMW DOM and POM) from algal exudates and phytodetri-
tus may play an even more important role (841, 848, 849). It is
necessary to monitor the flows of matter and energy during
blooms to gain a better understanding of bacterium-alga interac-
tions and microbial community successions.

Recently, it was shown that the abundance of surface-associated
MRC bacteria is decreased while that of Bacteroidetes is increased
in response to increases in environmental temperature or elevated
partial CO2 pressure (pCO2)-induced ocean acidification (322,
324). Similarly, the abundance of planktonic Bacteroidetes also
increases in response to increased temperature and/or CO2 con-
tent (and thus decreased pH) in both mesocosms and natural
seawater environments (850–852). These results further empha-
size the niche segregation and ecophysiological distinction of
these two key groups of marine bacteria and indicate their distinct

roles in marine carbon cycling and other critical biogeochemical
processes, especially under the scenario of global change.

FUTURE PERSPECTIVES ON STUDIES OF MARINE SURFACE-
ASSOCIATED MICROBIOTA

Although a wealth of information has been obtained regarding
surface-associated microorganisms, major gaps in our knowledge
remain, especially regarding community structure, dynamics,
functions, and the impacts of the changing marine environment.
The compositions and structures of the surface-associated micro-
biota and the processes and mechanisms of microbial surface col-
onization and biofilm development are highly complex, particu-
larly in dynamic natural marine environments. Many working
hypotheses regarding the marine surface-associated microbiota
have been proposed in previous studies and throughout this re-
view. Here we summarize a number of scientific questions that
should be productive to pursue regarding marine surface- and
biofilm-associated microbial communities.

• What are the physicochemical and nutritional environmen-
tal cues that marine microorganisms sense and respond to
for initiating surface colonization and biofilm formation? Is
there any consistency among these cues in different marine
environments, such as in estuaries, coastal seas, and open
oceans?

• What are the molecular apparatus and mechanisms em-
ployed by marine microorganisms to sense distinct environ-
mental cues for initialization of surface colonization and
biofilm formation? Do microorganisms in different phylo-
genetic or functional groups use the same sensing systems
and mechanisms for the same environmental cue, or do they
vary at group-, species-, or even strain-specific levels?

• How is an extracellular signal from an environmental cue
relayed inside the microbial cell, and how is the intracellular
response for surface colonization and biofilm formation
elicited and regulated in the cell? How may the environmen-
tal signal be propagated among different microorganisms to
induce a communal behavior in marine surface coloniza-
tion and biofilm formation?

• What are the major cell surface components that are in-
volved in surface sensing and surface colonization in marine
microorganisms? Are C. crescentus flagellum-based surface
mechanosensing and holdfast-based surface colonization
common mechanisms in marine primary surface coloniz-
ers? What distinct functional roles may primary and sec-
ondary surface colonizers play in surface-associated micro-
bial communities? What role may coaggregation play in the
composition and succession of marine surface-associated
microbial communities? How do the different mechanisms
of microbial cooperation and competition influence the
composition, structure, spatiotemporal dynamics, func-
tions, and stability of marine surface-associated microbial
communities?

• How may the composition, structure, and functions of sur-
face-associated microbial communities be related to the
physicochemical and nutritional differences of distinct sur-
face or particle types in the ocean? How may the interactions
of the surface-associated and free-living microbial commu-
nities influence each other? How may the surface-associated
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microbial communities and functions be influenced by vi-
ruses, protozoa, and surface-grazing zooplankton?

• How may surface association influence the genetic, physio-
logical, and ecological fitness of marine microorganisms?
Do surface-associated microorganisms evolve faster, driven
by more frequent horizontal gene transfer events, than their
free-living counterparts? How do plasmids, chromids,
GTAs, and other extrachromosomal elements impact sur-
face-associated fitness and its dispersal among marine mi-
croorganisms? How can these genetic elements be engi-
neered and employed to control microbial surface
colonization and biofilm development, for instance, to pre-
vent biofouling and biocorrosion?

• For clearly identified, commonly occurring marine surface
colonizers such as MRC bacteria, Bacteroidetes, Alteromon-
adaceae, and Vibrionaceae, is there any interaction (cooper-
ative or competitive) among these bacterial groups on sur-
faces and in biofilms? How may these interactions be
influenced by changing marine environments?

• What are the quantitative contributions of marine particle-
associated microbiota to the biogeochemical cycling of life-
essential and environmentally important elements, primary
production (in both photic zone and dark deep waters),
and carbon sequestration of the ocean? How may these con-
tributions be altered in response to anthropogenic pertur-
bations and global environmental change impacts? Are
surface-associated microbial communities functionally re-
silient in the face of these impacts? What are the roles of
surface-associated microbiota in (accelerating or decelerat-
ing) global environmental change? How can we build a
mechanistic and prediction-based model?

As microbial surface colonization and biofilm formation and
development involve multiple levels of cell-surface and cell-cell
interactions, by both direct contact and signal molecule- and me-
tabolite-mediated communication and coordination, laboratory
studies using single microbial species and simple mixtures of spe-
cies are still necessary. Such studies are particularly important for
gaining an in-depth understanding of the microbial physiological,
biochemical, and genetic characteristics and their environmental
responses during key stages of surface colonization and biofilm
formation. For single bacterial species, transcriptomic and pro-
teomic studies have revealed useful information about differences
in gene expression and protein functions between planktonic and
sessile bacterial populations and about the carbon and energy
metabolic processes characteristic of distinct biofilm growth states
(585, 853). For surface-associated microbial community analyses,
molecular approaches such as gene clone library screening, fluo-
rescence in situ hybridization (FISH) analyses, and activity assays
(especially at the single-cell level) can provide vital information
about the composition, abundance, and spatiotemporal variation
of the major surface-colonizing microorganisms and their in situ
activities and functions (854, 855). Mechanistic studies will pro-
vide more information about the functions and regulation of the
surface-associated microbiota from an ecosystem perspective.

Marine surface-associated microbial communities are intrin-
sically complex and dynamic, involving diverse microbial species,
functional groups, metabolic pathways, sensing and signaling net-
works, cooperative and competitive mechanisms, genetic ex-

change and evolutionary potentials, as well as spatiotemporal
variation and acclimatization. Furthermore, many different sur-
faces (including various kinds of particles and aggregates) exist in
marine environments (186). The differences among the coloniz-
able substrata add another level of complexity and diversity to the
surface-associated microbial communities and their ecophysiol-
ogy and biogeochemical functions (245). Thus, systems biology
approaches are necessary in order to gain an understanding of the
community composition, dynamics, and especially the function
and its regulation of the marine surface-associated microbiota
(856). These approaches will be particularly helpful in decoding
the higher-level characteristics of surface-associated microbial
communities, such as various cooperative and other sociomicro-
bial functions (35, 61). “Omics” methods and related bioinfor-
matics analytical tools, which are generally capable of dealing with
high-throughput, rapid, and complex analyses, have been pro-
posed as vital approaches (857).

Recently, the in situ gene expression of a chemolithoau-
totrophic Epsilonproteobacteria-dominated biofilm from a deep-
sea hydrothermal chimney was analyzed by using metatranscrip-
tomics (858). Although typical surface-associated microbial
communities in marine waters may be much more complex than
the biofilm communities in extreme environments such as deep-
sea hydrothermal vents, the rapid development of omics-related
approaches presents a promising opportunity to make strides in
understanding the marine surface-associated microbiota (859).
Omics techniques have already been adopted and are being inves-
tigated for marine biofilm microbiota studies (860, 861). Al-
though there seems to be a multitude of opportunities to improve
these techniques, it is reasonable to predict that substantial ad-
vances are in the offing.

Recent omics investigations of marine particle-associated mi-
crobial communities revealed a wealth of information about cer-
tain common characteristics of microbial particle colonizers. Met-
agenomic investigations showed that MRC bacteria are abundant
on particles in estuarine, coastal, and polar waters (151, 758, 862),
consistent with previous 16S rRNA clone library-, 454 pyrose-
quencing-, genomics-, and FISH-based study results that found
that these bacteria are key primary surface colonizers in coastal
waters (8, 13, 20, 54, 173, 272, 450, 594). Metagenomic investiga-
tions have also indicated that particle-associated microbial com-
munities generally harbor a more diverse and complex gene rep-
ertoire than free-living communities, such as higher genetic
potential for transporters of particle biopolymer degradation
products and adaptations to life under hypoxic and anoxic condi-
tions. This includes enrichment in genes related to sulfate reduc-
tion, methanogenesis, and anammox (151, 161, 863). Recently,
high rates of N2 fixation and nifH gene expression by hetero-
trophic diazotrophs were detected in fully oxygenated marine wa-
ters, suggesting that particle association may be the key mecha-
nism to provide the hypoxic or anoxic conditions necessary for
this process in such environments (155, 864). Metatranscriptom-
ics studies indicate that different microorganisms may employ
distinct adaptive strategies for the use of either free-living or par-
ticle-associated habitats in the ocean (865). Particle-associated
communities usually harbor more genes that mediate microbial
surface colonization, cell-cell interactions, signaling, and trans-
posase-based mobile genetic element activity, all of which are im-
portant for surface living and fitness on marine particles (151,
161). In line with these findings, particle-associated microbial
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communities transcribed more copies of genes encoding signaling
and surface adhesion cellular components that are related to bio-
film formation than free-living communities (866). Particle-asso-
ciated microbial communities also transcribed more copies of
genes encoding metabolic pathways that are related to reducing
environments (153). For example, transcripts encoding enzymes
for microbial denitrifying N2O and N2 production were enriched
up to 28-fold in particle-associated samples found in the OMZ of
the Eastern Tropical North Pacific (167). Although there have
been no metaproteomic studies on size-fractionated particles to
date, preliminary metaproteomic studies without size fraction-
ation have inferred certain key properties of particle-associated
microbial groups in marine environments. For example, these
studies have shown that MRC bacteria are rich in membrane
transporter expression for the uptake of labile organic substrates,
especially during algal blooms (867, 868). Metaproteomic studies
have also suggested that marine Bacteroidetes (mainly the Flavo-
bacteria group) are specialists in attachment to and growth on
algal surfaces or detrital particles (194, 841, 867). A recent pro-
teomic study revealed the major functional proteins in V. cholerae
vesicles (750). These approaches are also suitable for studying mi-
crobial surfomes (869) to decode key surface-associated processes
such as signaling, adhesion, transport, and cell-cell and cell-envi-
ronment interactions. Metaproteomics also have great potential
for studies of marine extracellular enzymes, vesicles, and cell sur-
face proteinaceous determinants of surface-associated microbi-
ota. In addition to the identification of surface-induced gene ex-
pression and functional adaptivity, metatranscriptomic and
metaproteomic approaches show the potential to identify fine-
scale spatiotemporal dynamics and interspecies interactions (such
as cooperation and competition) in complex microbial commu-
nities (870, 871), suitable for process and functional analyses of
surface-associated microbiota.

Diverse sensing mechanisms and cell surface and extracellular
components are involved in microbial surface interactions and
surface living. Several key cellular components or systems can thus
be defined specifically for surface- or biofilm-associated microbial
communities, such as the metasensoritomes, metasecretomes,
and metasurfomes (343). These systems are involved in key steps
of microbial surface colonization and biofilm development on
surfaces, such as initial cell-surface interactions of the pioneer
colonizing species, interspecies cell-cell interactions between pri-
mary colonizers and secondary colonizers for recruiting new mi-
croorganisms and metabolic pathways, and microbial interpopu-
lation interactions leading to spatial variation and temporal
succession of the colonizing community. Furthermore, genome-
scale metabolic network reconstructions have become a powerful
tool for systematic understanding, prediction, and discovery of
the genetic and biochemical potentials of an organism (872). This
technique also serves as a platform for constraint-based analyses
and modeling of microbial communities (873). The integration of
community metabolic network reconstructions (constrained by
the community signaling and regulatory networks) with ecologi-
cal and biogeochemical modeling may provide a fundamental
framework for mechanism- and prediction-based modeling of
both the biological components and the biogeochemical functions
of marine ecosystems (874, 875). Thus, omics approaches, along
with cultivation and conventional molecular approaches, provide
the means for targeted investigation of surface-specific communi-
ty-level microbial features, which may lead to an enhanced under-

standing of surface-associated microbial community ecology and
biogeochemical functions, at the levels of both molecular mecha-
nistic details and systems biological comprehension.

APPENDIX

Definitions

remineralization depth The depth at which particulate organic carbon is
consumed and respired by marine animals and microorganisms. The
remineralization of marine organic particles follows an exponential
decay pattern with water depth. The remineralization depth deter-
mines the degree to which the respired CO2 that is returned to the
water column can influence air-sea CO2 partitioning and, thus, cli-
mate.

POC (particulate organic carbon) The organic carbon in particulate
form that is large enough to be retained on a filter (typically with a filter
with a pore size of 0.7, 0.45, or 0.22 �m).

DOC (dissolved organic carbon) The organic carbon remaining in the
filtrate after the sample is filtered (typically with a filter with a pore size
of 0.7, 0.45, or 0.22 �m).

marine snow Mostly biogenic particles with a diameter of �0.5 mm.
These organic particles are usually formed in the euphotic zone of the
ocean and sink at high rates to serve as the principal means by which
organic carbon is transported to the deep ocean and sediments.

transparent exopolymer particles Small organic particles (less than a
few hundred micrometers) that are visible under a light microscope
only by staining with an acidic polysaccharide-specific dye, such as
alcian blue, or are otherwise transparent and invisible by light micros-
copy. They are abundant in marine waters and formed by extracellular
biopolymeric substances exuded by phytoplankton and bacteria.

biological pump The vertical transportation of photosynthetically pro-
duced organic carbon, mainly in the particulate form, from the eu-
photic surface ocean to the dark deep ocean. The biological pump
provides one of the biological mechanisms contributing to the oceanic
sink of atmospheric CO2 via the settlement of biogenic organic parti-
cles out of the ocean surface waters.

microbial carbon pump The process of microbial transformation of la-
bile dissolved organic carbon to recalcitrant dissolved organic carbon,
contributing to ocean carbon sequestration in the dissolved organic
phase.

microbial loop The pathway of carbon and energy flow, via hetero-
trophic Bacteria and Archaea, from dissolved organic matter to bacte-
riovorous protists and further to other animals at higher trophic levels
in the aquatic food web.

epipelagic zone Also referred to as the “euphotic zone,” the water layer
from the air-sea interface down to the depth at which the light intensity
falls to 0.1% of that at the ocean’s surface. This illuminated portion of
the water column, usually in the upper 200 m in the clearest ocean
water where sufficient sunlight is available, sustains net photosyn-
thesis.

mesopelagic zone Also referred to as the “twilight zone,” the water layer
immediately below the euphotic zone and usually between depths of
200 m and 1,000 m where sunlight is measurable but insufficient to
support net photosynthesis. The mesopelagic zone is usually charac-
terized by intense microbial heterotrophic activities.

bathypelagic zone The water layer from 1,000 m down to �4,000 m,
where only chemoautotrophs (but not photoautotrophs) contribute to
marine primary production due to the complete lack of sunlight.

chemolithoautotroph A microorganism that uses CO2 as its source of
carbon for biomass production and cell growth and derives its meta-
bolic energy from the oxidation of reduced inorganic compounds.

mixotroph A microorganism that can obtain its metabolic energy or
carbon from more than one conventional source. For example, many
chemolithoautotrophic microorganisms can assimilate some organic
compounds as supplements to CO2 fixation.

anaplerotic CO2 fixation Heterotrophic CO2 fixation (i.e., heterotrophic
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CO2 assimilation) processes that usually employ carboxylation reac-
tions to incorporate CO2 into organic intermediate metabolites to re-
plenish the tricarboxylic acid cycle. This carbon assimilation reaction is
an important metabolic activity for carbon acquisition, biomass pro-
duction, and growth in some heterotrophic microorganisms that do
not harbor autotrophic CO2 fixation pathways.

oligotroph A microorganism that tends to live in an oligotrophic envi-
ronment, such as the subtropical gyres of the ocean, which offers very
low levels of organic carbon. An oligotroph is usually characterized by
its genetic and ecophysiological adaptation to low-nutrient conditions
and may also display slow growth and low rates of metabolism.

copiotroph A microorganism that tends to live in an environment that is
rich in nutrients (particularly organic carbon). A copiotroph is usually
characterized by its genetic and ecophysiological adaptation to high-
nutrient conditions, fast growth, and high rates of metabolism when
concentrations of suitable substrates are sufficient.

priming effect The positive influence of a labile organic matter input on
the increased utilization and decomposition of originally refractory
organic matter in the environment. This effect may result from en-
hanced microbial activity stimulated by the supply of labile organic
matter.

biofouling The impairment or degradation of underwater surfaces,
equipment, and structures as a result of the gradual and undesirable
accumulation, growth, or activity of living organisms such as bacteria
(and their extracellular products), protozoa, algae, barnacles, and
other fouling animals on surfaces. Biofouling usually results in corro-
sion, clogging, contamination, or a decrease in the efficiency of moving
parts. Biofouling is a major concern in bioinvasion as well.

biocorrosion Also called microbiologically influenced corrosion or mi-
crobially induced corrosion, corrosion caused or promoted by bacteria
and other microorganisms, due mainly to their activities on the sur-
faces and/or in biofilms of the corroding material.

ALWC (accelerated low water corrosion) A particularly aggressive form
of localized biocorrosion that affects marine steel structures in seawa-
ter near the low water tide mark in virtually all the world’s oceans and
climates. ALWC usually results in very high rates of metal wastage, up
to or even greater than 1 mm year�1, whereas the steel corrosion rate in
seawater without ALWC is 0.05 to 0.15 mm year�1.

phycosphere The region surrounding a phytoplankton cell that repre-
sents a high-nutrient environment. This microhabitat usually harbors
a unique microbiome and stimulates specific phytoplankton-bacte-
rium interactions such as parasitism, communalism, or mutualism.

plastisphere A unique (micro)environment surrounding human-made
plastic debris that is colonized by various microorganisms in the ocean.
Plastic debris provides durable surfaces and vehicles for attachment,
survival, and long-distance transportation of marine microorganisms
(including human pathogens).

chromid An extrachromosomal genetic element that carries some core
genes and has similar nucleotide composition (such as G�C content)
and codon usage as chromosomes but instead harbors the plasmid-
type maintenance and replication systems. Chromids are sometimes
called “megaplasmids.”

gene transfer agent A bacteriophage-like extrachromosomal genetic el-
ement produced by some bacteria that mediates horizontal gene trans-
fer via genomic DNA transduction from the donor bacterium to a
recipient bacterium.

sensoritome The complete set of the diverse microbial surface-sensing
machinery and its regulated response products that are involved in a
microorganism’s sensing, signaling, and responsive reactions to extra-
cellular environmental cues and population size signals.

metasensoritome The whole set of sensoritomes of all the participating
microorganisms in a community or a specific environment that are
involved in the sensing, signaling, and responsive reactions of the mi-
crobial assemblage to extracellular environmental cues and interor-
ganism communications.

secretome The complete set of secretion systems and their secreted/
translocated products, such as those involved in the surface coloniza-
tion, biofilm formation, and development processes of a surface-asso-
ciated microorganism.

metasecretome The whole set of secretomes of all the participating mi-
croorganisms in a community or a specific environment, such as those
involved in the establishment, development, and maturation of a sur-
face-associated microbiota.

surfome The complete set of microbial surface-exposed proteinaceous
moieties that play important roles in signaling, adhesion, and transport
of a microorganism.

metasurfome The whole set of surfomes of all the participating micro-
organisms in a community or a specific environment, such as those
involved in the signaling, adhesion, and transport processes of a sur-
face-associated microbiota.
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